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ABSTRACT

In an effort to curtail rising operating costs, machinery

condition monitoring and diagnostics are being increasingly used as

part of predictive maintenance programs. Vibration atalysis is

currently among the most effective tools in machinery condition

monitoring and diagnostics but has proven difficult to automate

fully. Artificial Neural Networks, patterned after neurological

systems, provide a heuristic, data based approach to problems and

have demonstrated robust behavior when faced with unique and noisy

data. Thus neural networks may provide an alternative or complement

to conventional rule based expert systems in machinery diagnostics

applications. Research is presented wherein a series of neural

networks utilizing the highly successful backpropagation paradigm

are configured to provide machinery diagnostics for comparatively

uncomplicated mechanical systems Through observation of their

responses to minor architectural changes and performance upon

presentation of genuine and artificially generated vibration data,

an effort is made to ascertain their utility in more complicated

systems.
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I. INTRODUCTION

As operating costs continue to rise, greater emphasis on

minimizing down time of critical machinery by establishing

effective machinery maintenance programs. By far the most

efficient of the major maintenance programs available is the

corrective maintenance program. The critical factor in

implementing this program is a reliable means by which to

monitor the health of operating machinery and to diagnose the

source of the fault when something goes wrong. While this has

traditionally been accomplished by highly capable and

qualified machinery experts, their small number and expense

makes it highly desirable to automate the machinery monitoring

and diagnostics process. Indeed there have been a number of

rule based expert systems placed on the market in an effort to

satisfy this need. Unfortunately they have not proven entirely

successful. Principal areas of weakness lie in the nature of

the problem. Mathematical characterization of all but the most

elementary mechanical systems exceeds current computational

capability. The sources of mechanical excitation include

multiple sources of noise which tend to confuse conventional

rule based expert systems. Often the nature of mechanical

vibration troubleshooting does not conduce itself well with

the series nature of conventional computers.
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Artificial Neural Networks possess features that may help

alleviate a number of these characteristic problems. Neural

networks are data-based vice rule based, thereby possessing

the potential of being able to operate where analytical

solutions are inadequate. They are reputed to be robust and

highly tolerant of noisy data. They are parallel in nature

which gives them certain advantages in assimilating the

experience of existing biological "expert systems" in ways

completely different from the manner in which current expert

systems must operate.

While Artificial Neural Networks have only come into their

own since 1985, they are not entirely untried. Neural Networks

have been assimilated into a number of engineering

applications. In the Chemical Engineering field, Watanabe and

Himelblau[Ref.l] as well as Venkatasubramanian and Chan[Ref.2]

have utilized multi-layered neural networks to assist in

chemical process fault diagnostics. In the Medical Engineering

field, Porenta et al[Ref.3] developed a pattern recognition

system which identified diseased and healthy coronary arteries

based on scintigram profiles and Iwata et al [Ref.4] developed

a data compression system to increase the recording capacity

of Holter portable EKG machines. In the Automotive Industry

Marko et al [Ref.5] developed a neural network based

diagnostic system for use with an electronic engine control

computer. In the Aeronautical Engineering field, McDuff, et al

[Ref.6) developed an engine fault detection system utilizing
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an ART1 learning algoiithm, while Dietz, Kiech and Ali [Ref.7]

developed a similar device for the F/A 18 using the

backpropagation learning algorithm. This is only a few of the

applications currently in progress. Application in machinery

condition monitoring and diagnostics is a logical extension.

This paper is broken up into six additional sections. The

remainder of this section further elaborates on the

background, intentions, and direction of this research.

Chapter II provides a brief overview of the theory and

development of artificial neural networks and particularly the

backpropagation paradigm. Chapter III provides background

information on machinery diagnostics. Chapter IV describes a

series of preliminary experiments on which a prototype neural

network diagnostics models was based and includes a

sensitivity analysis of the neural networks to the number of

processing elements in its hidden layer. Chapter V presents

the physical model for which the prototype neural networks

diagnostics models were designed and describes the empirical

data acquisition process. Chapter VI describes the

architecture, training methodology , and responses to

empirical and artificially generated data for the prototype

neural network diagnostics models.

A. MACHINERY MAINTENANCE PROGRAMS

All industrial organizations utilizing any range of

mechanical equipment will tend to schedule the maintenance of
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that equipment in accordance with one or several of the three

following general machinery maintenance programs. The simplest

and least efficient of these programs is a corrective

maintenance program. Here the equipment is allowed to operate

without any intervention by service personnel until it breaks

down, whereupon the equipment is serviced to correct the

casualty and then returned to operation. This maintenance

program has the advantages of being easy to manage and

inexpensive to implement until the equipment breaks down. Its

drawbacks are that once the equipment does break down, the

damage suffered by the equipment is likely to be severe and

the attendant down time extensive. Furthermore, the equipment

breakdown will be unscheduled and will have an adverse effect

on the operation of the entire plant should the equipment not

be redundant and still be essential to the plant's operation.

This has the tendency to make this machinery maintenance

program prohibitively expensive in all but the least

sophisticated operations.

Preventive maintenance consists of a managed program of

periodic maintenance checks scheduled throughout the service

life of the machinery. The periodicity of these checks is

generally based on corporate experience with the more

sophisticated checks and those requiring extensive down time

occurring much less frequently than less sophisticated checks

and those requiring little or no down time. This program

requires considerably more management and involves
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considerably more intervention by service personnel than the

corrective maintenance program and is correspondingly more

expensive to implement. However, although the frequency of

short down periods for the equipment increase, the long down

times and great expense associated with catastrophic failures

is substantially reduced. Further, the down times for the

equipment can be efficiently scheduled to minimize

interference with plant operation whereas the down periods

associated with the corrective maintenance program could not.

This aspect of a preventive maintenance program is its chief

attraction and preventive maintenance programs have achieved

widespread acceptance throughout industry and government.

Preventive maintenance is not without its drawbacks,

however. Often the corporate experience associated with a

particular machinery component is limited and, to compensate

for this, periodicities for the various checks are compressed.

While this may not be a problem with maintenance checks

requiring minimal down time, financial outlay, or technical

expertise, there are numerous checks that do require

significant outlays of these scarce resources and thus

contribute to the inefficiency of plant operation. Further,

even with the best preventive maintenance program, equipment

will break down unexpectedly on occasion, albeit at a much

reduced rate than that found in a corrective maintenance

program. Preventive maintenance can also give rise to self-

imposed casualties. Scarcely an experienced technician exists
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who has not encountered a situation where a previously

smoothly operating machine has undergone a maintenance check

following which it has broken down due to some error in

reassembly. While ensuring that the experience level of those

conducting the maintenance check is appropriate to its

complexity will reduce the number of these occurrences, it

will never completely alleviate them.

A predictive maintenance program, where the health of

machinery components could be determined while in an on-line

status and component faults could be predicted well in advance

of failure would allow for timely and scheduled correction of

faults without requiring unnecessary and expensive maintenance

checks. This type of program would be ideal, providing all of

the benefits of both corrective and preventive maintenance

programs without their attendant drawbacks. However, this

program would have to include a highly reliable means of

machinery fault prediction in order to be successful. To

accomplish this a reliable means of machinery condition

monitoring and diagnostics must be obtained.

B. MACHINERY CONDITION MONITORING AND DIAGNOSTICS

To be successful a machinery condition monitoring system

must be capable of obtaining the required information about

the machinery while it is in an on-line status. Currently

numerous system-wide operating parameters are methodically

monitored either manually or with automated data recording

6



systems, but in general, the data obtained by these means

while sufficient to monitor the system or plant as a whole are

insufficient to determine the status of components of

individual machines to the point of providing the basis for an

effective predictive maintenance program. Three fields of

condition monitoring that show promise in providing such

detailed information include temperature analysis, tribology,

and vibration analysis. However, while detailed temperature

analysis is limited to machinery involved in a thermal cycle,

and tribology requires a means of extracting machinery wear

products from the machine such as a lube oil filter, vibration

analysis can be used on any machine involving moving parts

without interrupting that machine's operation and has the

potential to provide the detailed information required to

reliably predict machinery faults well in advance of failure.

Since its inception, great progress has been made in the

field of vibration analysis. Analytical solutions for the most

elementary mechanical systems have been in existence for a

long time. As improvements in computer-based modal analysis

techniques continue to be made, the level of complexity of

mechanical systems that can be solved by numerical and

analytical means improves correspondingly. Nevertheless, the

extreme complexity of existing and anticipated mechanical

systems, as well as the physical limitations of sensor

placement, the presence of extraneous noise, and transient

operation complicate the machinery vibration problem to the
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point that it is doubtful that analytical or numerical methods

will be able to provide practical solutions to real machinery

diagnostics problems.

This does not invalidate the utility of vibration analysis

in the field of machinery condition monitoring and

diagnostics. Experienced technicians have long astounded

engineers by their ability to predict and identify machinery

faults merely by listening to and touching their machinery. By

combining heuristic and analytical knowledge with modern

vibration monitoring instrumentation, a significant machinery

diagnostic capability has been achieved. However, to be

reliable, this analysis has had to be conducted by a limited

number of experts. The rapid rise of computer technology has

somewhat alleviated the problem of too few machinery

diagnostics experts through the proliferation of rule based

expert systems. However complicated series of IF-THEN

statements are not always sufficient to accurately represent

a knowledge base nor are they capable of easily incorporating

new information as it becomes available. They are also

generally less effective at detecting multiple faults than the

experts that programmed them, and they are susceptible to

error when provided partial or noisy information. Perhaps a

data based approach rather than a rule based approach could

help solve the limitations of conventional expert systems.

In the last several years a great deal of interest has

been generated in a new branch of artificial intelligence

8



based on the theoretical operation of biological nervous

systems. This branch of artificial intelligence features

massively parallel networks of simple processing elements

which function in a manner similar to biological neurons.

These artificial neural networks learn the patterns associated

with a given solution space by being provided a series of

example vectors associated with that solution space. This data

based vice rule based approach may make artificial neural

networks a powerful tool in the field of vibration based

machinery condition monitoring and diagnostics. A schematic of

how the neural network would fit into the machinery condition

monitoring and diagnostics scheme is provided in Figure 1.

C. INTENT AND DIRECTION OF RESEARCH

Artificial neural networks are gaining popqlarity in a

number of applications including pattern recognition, signal

processing, and non-linear optimization. The purpose and

intent of this research is:

• To determine the feasibility of the application of
artificial neural networks to machinery diagnostics by
means of simple models and predominantly artificially
generated data.

• To develop and a moderate complexity neural network model
representing a physical model with multiple machinery
components.

. To train and test this prototype neural network based
machinery diagnostics model using both artificial and
empirical data.
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Figure 1 General Machinery Diagnostics System Schematic

To ultimately incorporate neural networks into a
diagnostic system for a highly complicated machinery
system with highly transient operating conditions.

This thesis will focus primarily on the first three

elements. However, the ultimate direction of focus of the

research should also be kept in mind.
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II. NEURAL NETWORK OVERVIEW

An Artificial Neural Network(ANN) is a massively parallel

distributed processing system consisting of a series of

interconnected individual processing elements which process

information in a manner similar to that theoretically employed

by neurons in biological systems.

In biological systems each neuron receives electrochemical

stimulation from other neurons through its dendrites and axons

by means of interneural connections called synapses. If the

stimulation is sufficient, the individual neuron undergoes an

electrochemical response and transmits this response to other

neurons through various synapses. The strength of these

synapses are as much a factor in determining the degree of

excitation of the neuron as is the input stimulation itself.

Similarly, in ANN's, each processing element or artificial

neuron is connected to several other processing elements by

means of connections which are assigned a weighting of

variable strength. The processing element then transmits a new

signal to other processing elements depending on the value of

a threshold as well as the strength of the input signal and

the weighting of the connection. A schematic is provided in

Figure 2.
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Figure 2 (A) Biological Neuron (B) Artificial Neuron

An ANN is generally composed of several levels of multiple

processing elements, the lowest of which receives an input

vector with one component of the vector introduced to each

processing element. The responses of these processing elements

are each transmitted to all processing elements of the next

level, whose responses are in turn transmitted to each element

of the following level. Thus the input vector is processed by

each successive level of processing elements until the final

level is reached. The response of this layer composes the

output of the network. A schematic of this process is

provided in Figure 3.
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Figure 3 Generic Artificial Neural Network

This chapter is intended to provide the reader a brief

overview of the terminology associated with neural networks,

their history, and a synopsis of some of the learning

algorithms and architectures currently being employed in

neural computing. Particular attention will be given to the

backpropagation algorithm as its use in machinery diagnostics

is the focus of this research.
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A. BASIC DEFINITIONS

1. Processing Element

A processing element(PE) is the lowest level

self-contained computing element in the neural network. It

typically is composed of three parts: a summer, a transfer

function, and a threshold. The PE first sums all inputs it

receives from outside the network or from other PE's. This sum

is then compared to a threshold, which in several algorithms

is zero. If the summed value is greater than the threshold,

the summed value is processed by a generally non-linear

transfer function. This non-linear transfer function is the

heart of the processing element and gives the neural network

the capability to discern non-linear relationships. It is

also this transfer function that separates the artificial

neural network from Bayesian nearest neighbors and statistical

least squares approaches.

2. Layer

A layer is a group of PE's which are interconnected

to other layers in the network but are not interconnected

among PE's within their own layer. Layers are generally of

three types: input, hidden, and output layers. PE's from the

input layer are only connected to other PE's on the output

side and receive input external to the network. PE's in the

output layer are interconnected with other PE's on the input

side and transmit output external to the network. Hidden

14



layers are intermediary layers consisting of groups of non-

interconnected PE's which receive and transmit signals from

other layers of PE's. The primary role of the hidden layer is

to extract features from the previous layer for mapping to the

next layer.

3. Connections

Connections are the means by which signals are

transmitted throughout the network and are analogous to the

dendrites and axons of the biological neuron. Each connection

is a one or two-way path from one processing element to

another. Each connection has a weight associated with it which

is analogous to a synapse in a biological neural network. The

values of the weights determine how the input vector maps onto

the solution space and are the key instruments by which the

network recognizes various patterns and relationships.

4. Learning

Originally the connection weights are established

randomly throughout the network. The process by which the

connection weights are adjusted to map the input vectors to

the solution space is called "learning". There are two general

types of learning. The first is supervised learning, where the

weights are adjusted by some algorithm using a training set of

input vectors. Here the actual output of the network is

compared with a "target" or desired output and the connection

weights are adjusted accordingly. The second type of learning

15



is unsupervised learning, where the network is left to itself

to categorize various input vectors given an established

threshold. This type of system is analogous to the statisticel

nearest neighbors classifier.

The key differences between various neural network

architectures lies predominantly on the way they "learn". This

is determined entirely by their learning algorithms, a few of

which will be described shortly. However, a good deal of

insight into the nature of neural networks can be obtained

through a look at their developmental history.

B. HISTORY

The idea of 'reating a thinking machine based on

biological learning theory gained momentum in the late 1940's

when McCulloch and Pitts[Ref.9g published a paper "A Logical

Calculus of Ideas Imminent in Nervous Activity", which

stimulated interest in digita. computers, a macroscopic rule-

based approach to artificial intelligence, and biologically

based artificial intelligence. Biologically based artificial

intelligence gained further momentum when Hebb(Ref.10], a

neurobiologist, formulated a means wherein neurons might

learn, the Hebbian learning rule which was described earlier.

This notion gained great public interest when in 1958

Rosenblatt[Ref.ll] published research on an artificial neural

network inspired by the optical pattern recognition capability

of the eye based on processing elements called perceptrons.
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Around 1960 Widrow and Hoff[Ref.12] developed an improved

neural network based on the perceptron called an Adaline

(Adaptive Linear Element) , which was the basis of the first

commercially successful neural network enterprise, the

Memistor corporation. They also developed a theorem which

stated that an adaline and a perceptron are each capable of

classifying any input space that could be linearly separated

into two regions.[Refs.8 and 13]

The perceptron, however, for all its utility, had a

critical drawback in that it required that the decision space

be capable of being separated into two regions by means of a

hyperplane. This drawback was criticized severely in Minsky

and Papert's[Ref.14] book flc rons, where it was determined

that the perceptron was incapable of solving the elementary

exclusive OR logic problem. It was also criticized for not

having a means to adjust weights in the case of incorrect

outputs in multi-layer application. This criticism sharply

reduced interest and funding in the biologically based

artificial intelligence field.

Work continued in spite of little publicity and funding.

In 1974 Werbos[Ref.15] completed a PhD dissertation that

described an algorithm that provided a means to adjust

perceptron weights in response to output errors that would

eventually be improved upon and known as the backpropagation

algorithm. Grossberg[Ref.16] continued work developing

learning models based rigidly on neurobiological and learning

17



theory. In 1982 Hopfield[Ref.17] presented a paper on a

neural computing model based on the olfactory system of garden

slugs which built on previous work by Grossberg. This paper,

presented by a widely respected scientist, renewed interest in

neural computing. In 1986 Rumelhart improved upon the work of

Werbos and developed the highly popular and successful

backpropagation algorithm and, together with McClelland,

Hinton and Williams[Ref.18), has continued to develop it.

Since this time the field of neural computing has grown

rapidly, with new applications being discovered

regularly.[Ref.8]

The numbers and areas where applications for neural

networks are being found span several disciplines and seem to

focus on tasks such as signal processing, non-linear

optimization, and pattern recognition. Their signal processing

capability has been exploited in the medical field in the

compression of electrocardiogram signals[Ref.4]; in image

processing while subjected to noisy input data; and in

predicting complicated series based on prior histories such as

in weather prediction, general mathematics, and the stock

market [Refs.8 and 19]. Their optimization capability has been

exploited in determining optimum travel itineraries, circuit

wiring, and non-linear control systems(Refs.8 and 19]. Their

pattern recognition capabilities have been utilized in speech

and symbol recognition[Refs.8 and 19], medical

diagnostics[Ref.3], chemical processing[Refs.l and 2], sonar
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classification[Ref.20], electrical surge protection circuit

testing[Ref.21], and engine fault detection[Refs.6 and 7].

This is a very limited listing of successful applications.

Some of these have provided direct insights on how to approach

the machinery diagnostics problem and will be described in

later sections of this paper.

C. LEARNING RULES AND ARCHITECTURE

In conventional computing in general and in building

expert systems in particular, the program software and rules

formulated through collaboration of programming and subject

experts is the heart of the system. In neural computing, the

network architecture and learning algorithms used by the

processing elements is central to the system. There are a

great number of learning algorithms currently in use with some

more popular than others for engineering applications.

1. Supervised Learning: General

Supervised learning can be subdivided into three

general forms. These are Hebbian learning, Delta learning, and

competetive learning.

a. ebbian Learning

Hebbian learning is based on the premise that those

connections that receive the most signal energy should in turn

be strengthened.In this type of neural network, connection

weights increase in a manner proportional to the magnitude of

the signals provided that both the input through the path and
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the desired output are high. While historically important and

neurologically accurate, it is not widely used in neural

computing applications.

b. Delta Rule Learning

Delta rule learning is probably the most popular

type of learning currently in use. Here, weights are adjusted

based on a direct comparison between the actual and desired

outputs. Backpropagation is one learning rule based on the

generalized delta rule:

= C2E j + C3Xi (1)

where Wi, is the weight of the connection from the

ith element in the current layer to the jth element of the

previous layer; C,, C,, and C, are coefficients varying from 0

to 1; E1, is the error proportional to the difference between

the actual and desired output of the network; Mi, is the

momentum term based on the difference between the previous

weight of the given connection and the weight immediately

prior to that; and Xi, is the activation energy associated with

that particular connection.[Ref.8]

c. Competetive Learning

Competetive learning is where the output of

processing elements is weighted according to the magnitude of

its response relative to those of other processing elements.

The "winning" processing element weighting is then modified

;-: ording to a comparison between actual and desired outputs.
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Thus only the strongest activation energies are adjusted; weak

signals get progressively weaker unless the magnitudes of

their response become comparable to those of the "winners".

Three examples which utilize forms of supervised

learning will be discussed here. Perceptrons and Adalines will

be discussed since they are the immediate predecessors of

backpropagation, which was chosen for use due to its history

of success.

2. Perceptrons

The perceptron was developed by Frank Rosenblatt in

the late 1950's and early 196 's for use in identifying

optical shape patterns and was inspired by the theoretical

workings of the human eye. The perceptron is a purely feed

forward three layer network wherein only the third layer is

involved in the learning process.

The first layer linearizes a two dimensional array of

optical inputs and subjects these inputs to an either linear

or non-linear transfer function and passes the processed

inputs to the second layer via connections of fixed weight.

The second layer is utilized for "feature extraction" and

compare the inputs from the buffer layer with a threshold

value which if exceeded allows further transmittal of the

signal to the third layer via another set of fixed connection

weights. The third layer, consisting of the actual

perceptrons, consists of processing elements that receive
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inputs from the second layer feature extractors through

variable weight connections and consist of a summer and a step

transfer function where the output is zero if the summation of

the weighted inputs plus a threshold or bias value of one is

less than or equal to zero and is unity if the summation is

greater than zero.

0 Y 1.O0;1>0

W..W7i n

Xi i-0

Figure 4 Perceptron Processing Element

Figure 4 shows the binary perceptron processing

element. The basic learning algorithm for adjusting the

perceptron weights is as follows:
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n

I=W 3 Xji I yj=. 0, if Ij>0; Yj=O. 0, ifI1:o (2)
i-i

where Y, is the actual output , I, is the summed

activation, and W, is the weighting between the perceptron and

the jth feature extractor. In other words, the actual output

of the perceptron is compared with a desired output of either

zero or one. If they match, all weightings into that

perceptron remain as is; if they do not match and the actual

output is zero, the weights to that perceptron are incremented

a fixed or random amount; if they do not match and the actual

output is one, the weights to that perceptron are decremented

by that same value.

As mentioned in the previous section, there are two

drawbacks to this learning rule. While Rosenblatt proved that

the perceptron network would eventually find a set of weights

that would place the input vectors into the right categories

if that set of weights existed, Minsky and Papert[Ref.14]

proved that for this to occur the categories would have to be

linearly separable; that is, the solution space of n

dimensions would nave to be able to be separated by a

hyperplane, or, in multiple perceptron networks, a set of

hyperplaneo, of n-i dimensions. They showed that this drawback

made it impossible for a single perceptron to solve the

exclusive OR problem and implied that this made the perceptron

incapable of solving "interesting" problems. The other
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drawback was that for multiple perceptrons, there was no real

means to determine the direction of weight adjustments in the

case of incorrect responses. These problems were later

remedied by utilizing multiple layers of processing elements

capable of weight adjustment and establishing a feedback loop

to help adjust the weights of individual processing elements.

Nevertheless, the perceptron was capable of rudimentary shape

recognition although it never progressed beyond the

experimental stage[Ref.8].

3. Adaline/Nadaline

The Adaline or A&dptive linear element was developed

by Bernard Widrow and Marcian Hoff[Ref.12] and has a general

architecture similar to the perceptron but with some

improvements, particularly with respect to determining the

direction and magnitude of weight adjustment based on the

error in the output. Figure 5 illustrates this architecture.

Like the perceptron, the basic adaline structure

consists of three layers. Here, however, it is the middle

layer vice the third layer where the learning occurs. In the

adaline, the first layer consists of multiple elements which

only apply a transfer function to the input value and generate

an output of either +1.0 or -1.0. The second layer operates

like a classical processing element and performs summation,

transfer function, and weight adjustment operations. The third

layer consists of processing elements with fixed input weights
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Figure 5 Adaline Processing Element

and performs a linear transfer function on the input.

The middle layer elements, the actual adalines,

perform the following operations.

First,

I - WJX 9  (3)

where X, is the jth input from the previous layer, W,

is its connection weight, and I is the internal activation

level. Then,

25



F(M) = SGN(I) (4)

where F(I) is the signum function which outputs ± 1.0

depending on the sign of I.

Weights are adjusted by the following algorithm:

8W a( x (5)

Here D. is the desired output, a is the learning coefficient,

which is valu- .jetween 0.0 and 1.0, N is the number of

weights inv' ed at the processing element, and 6 is the

incremert by which the weight is adjusted. An interesting

point about this algorithm is that the weights are adjusted by

the difference between the internal activation. energy and

desired output vice the actual output and the desired output.

The effect of this is to permit the weights to continue to be

adjusted even after a convergence between actual and desired

output is obtained. The effect of the algorithm is to

minimize the mean square of the error over the entire set of

vectors employed in training.

In summary the adaline has the following advantages

over the perceptron. It possesses the means to adjust the

weights in the correct direction and with an increment

proportional to the existing error. It also continues to adapt

even once convergence has been obtained. It is also not
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without drawbacks. Like the perceptron, the adaline employs a

somewhat linear transfer function and has binary outputs. It

also requires the input space to be linearly separable to

function successfully. Additionally, if the learning

coefficients are too large, and the number of weights exceed

the number of unknowns defining the input space, the weights

will have the effect of contradicting themselves, thereby

preventing convergence of the error function.

The Madaline is a neural network consisting of Many

adalines and has first and second layers identical to those of

an Adaline network. However, for its third layer, it utilizes

a single processing element which is also capable of learning.

In essence the Madaline processing element operates to

selectively correct the output of the Adalines in the previous

level by correcting either the Adaline whose internal

activation is farthest in the wrong direction, all of the

Adalines operating in the wrong direction, or only the Adaline

operating in the wrong direction when the majority of the

Adalines are operating in the wrong direction, depending on

the particular variety of madaline in use. These Madalines and

Adalines have been employed in telecommunications signal

processing, non-linear control systems, and in weather

prediction[Ref.8].
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4. Backpropagation

By far the most successful and popular neural network

architecture in use at the present time is back propagation.

This architecture addresses all of the drawbacks inherent to

the perceptron while still retaining a large portion of the

perceptron's basic structure.

a. General Architecture

The architecture still consists of several layers;

however, unlike in the cases of perceptrons and adalines,

where processing elements capable of learning were confined to

one layer, in backpropagation, all layers, that is, input,

output, and any number of hidden layers, are capable of having

their weights adjusted. Further, the backpropagation network

is not confined to three layers; any number of hidden layers

are possible. Figure 6 illustrates the backpropagation

architecture. The multi-layer learning capability of the

backpropagation network allows it to solve non-linearly

separable problems, the XOR problem that plagued the

perceptron.

b. Processing Element

The backpropagation processing element is similar

to both the adaline and perceptron in that it performs three

operations: a summing operation, followed by a transfer

function, followed by a learning algorithm. A schematic of

thie processing element is provided in Figure 7. It differs
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Figure 6 Backpropagation Network Architecture

from the previous processing elements in that it both receives

and transmits a non-binary signal.Like the adaline, in

addition to the weights associated with the connections

between processing elements, there is also a threshold or bias

weight associated with each processing element with an

adjustable weight but constant input activation of unity.

It also employs a nonlinear transfer function as

opposed to a simple binary transfer or linear transfer

function in previously discussed networks. This gives the

network much greater versatility in mapping the input space

and extracting features and makes this architecture
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Figure 7 Backpropagation Processing Element

particularly useful in mapping nonlinear relationships. While

Rummelhart, Hinton and Williams[Ref.18) indicate that any

monotonously increasing transfer function can be employed, the

most popular transfer functions currently in use are the

sigmoid function, which is defined as:

F(I) - (6)l+e-I

where F(I) is the output of the processing element

and I is the summation of all of its inputs. The second most
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popular transfer function in use is the hyperbolic tangent,

which is defined as:

F(I) - ex-e-1 (7)
e Z+e-I

Both of these are employed in the neural networks utilized in

this research. These transfer functions are most popular

primarily because their derivatives can easily be calculated

in terms of the original function, which makes the algorithm

more easily programmable. These derivatives are the key to the

backpropagation learning rule. A schematic of the common

transfer functions is presented in Figure 8.
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Figure 8 Popular Transfer Functions For Backpropagation

c. Backpropagation Learning Rule

The back propagation learning rule is very similar

to that used by Widrow and Hoff in the Adaline. As in the case

of the Widrow-Hoff rule, the intent of the algorithm is to

31



adjust the weights is such a way as to follow the path of

steepest gradient descent in weight space so as to reach a

least mean squares error between the actual and desired output

of the network. The means by which this is done, however, is

quite different.

Essentially each processing element updates its

weights in accordance with the generalized delta rule, which,

when neglecting momentum terms, is defined as:

A Wji = a (Dj -Ypj) Xip = a bpXip (8)

where AWi, is the change to the connection weight

between the jth processing element and the layer in question

and the ith processing element in the previous layer; a is a

learning coefficient, usually between 0 and 1; D,, is the

desired output of the jth processing element upon presentation

of the pth training vector and Y,, is the actual output; and

X,,, is the weighted input from the ith element in the previous

layer. To prove that this rule approximates an adjustment of

the weights along the gradient of steepest descent in weight

space, let E, represent the overall error found in the network

upon presentation of the sample vector p.

S2(9)
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The object is to prove:

aE_ = 6A (10)
aw 1 (

Using the chain rule,

PE -P-7 P- (11)awji aypjaw1

ay (Dg-Yj) = -86j (12)

Y~j = wjixpj (13)

Thus,

a x pj (14)

Substituting (14) into (11) yields:

awj
33 ,,x (15)
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Since,

aa2  (16)

,the change in Wj, approaches being proportional to

the gradient descent in weight space when minimizing the

overall error. If there was no change in the weighting, then

this would be exactly so but since the weights change at each

presentation, the rule only approximates the path of steepest

descent. Fortunately, if the change in weights is kept small

between presentations of input vectors, the approximation

approaches the exact path.

Rummelhart extends this proof to processing

elements with nonlinear transfer functions. The only real

difference is that with nonlinear transfer functions, the

derivative of the transfer function has to be calculated.

Here,

=&wi laji (17)

where,

6pj = (DPj -ZPj) f(I) (18)
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where, F' is the first derivative of the transfer

function and I., is the summation of weighted outputs, X,p's,

from the previous layer. For processing elements in

intermediate layers where there is no desired output available

for computation of the error, the error is determined by

feeding back the weighted errors from the processing elements

from the next layer. In other words, for the ith element in

the (k-l)th intermediate layer, the error term is

backpropagated from all of the jth elements from the kth layer

as follows:

n
bip = F'(Iip) a8il 1  (19)

i-i

Thus the operation of the network is as follows.

First the input vector is presented to the input layer and

transmitted through each successive layer up through the

output layer. The actual outputs are compared with the desired

outputs and error signals are computed in accordance with the

Generalized Delta Rule, Equation (17), and then adjusting the

weights leading to the output layer. The errors computed in

the output layer are then used to compute the error in the

previous layer processing elements in accordance with equation

(19) and adjusting the weights leading to that layer

accordingly. This process continues backwards through the
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network until the weights leading to the input layer are

adjusted. Then the next vector presentation occurs.[Ref.18]

d. Practical Considerations and Modifications

Although the backpropagation algorithm is quite

robust and has proven itself capable of solving a wide variety

of problems, its use is not without its drawbacks. As

experience in using backpropagation has grown, a number of

embellishments and modifications have been developed to

resolve practical difficulties inherent to the backpropagation

algorithm. In this section a number of practical

considerations and means to overcome them will be discussed.

(1) Limitations of Transfer Functions. While the

utilization of non-linear transfer functions is the source of

a great deal of power in the backpropagation algorithm, it is

also the source of a few drawbacks. A quick view of the

sigmoid and hyperbolic tangent functions will reveal that the

functions asymptotically approach 0.0 and 1.0, or -1.0 and

+1.0 , respectively. This means that there will always be an

error associated if the desired outputs are at these

asymptotes. Rummelhart[Ref.18] recommends that, to improve the

chances of convergence, or minimization of the error, or at

least to reduce computation time, one should set these types

of desired outputs to, for example, 0.1 and 0.9 instead of 0.0

and 1.0 Another alternative is to reduce the standards of

convergence, taking the impossibility of a complete
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convergence into consideration. At these asymptotes it is

also readily noticeable that the derivatives of the transfer

function approach zero. Thus if the activation energies get

very large in either a positive or negative sense, the

derivatives approach zero and no learning takes place. This is

generally caused by allowing the absolute value of the

connection weights to become excessively large and is called

saturation. Scott Fahlmann[Ref.22) indicates that this can be

alleviated to some extent by introducing a small positive

number to the derivative. Another possible remedy is to limit

the size of the delta weights by reducing the learning

coefficient, a [Ref.8]. This increases the number of

iterations required for the weights to transit from zero to

the very high value weights. There is thus a greater

possibility of attaining convergence before saturation sets

in.

(2) Initialization of Connection Weights. In the

original backpropagation networks, all connection weights were

initialized with values of zero, and all weight adjustments

were made by the delta rule. This resulted in symmetric weight

adjustments for all connection weights feeding into each

individual processing element due to the proportionality of

weight adjustments to the propagated error inherent to the

delta learning rule. While there were a number of problems

that could be solved with this arrangement, many more mappings
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requiring assymmetric weights could not be learned. This

problem can be readily overcome by distributing the weights

randomly about small values around zero. In this manner all

weights start out at different initial values and the pattern

of symmetry can be broken out of from the start. Most

backpropagation programs currently in use employ this

randomization scheme.[Ref.18]

(3) Learning Coefficients. A critical determinant

of the size of the weight changes from one vector presentation

to the next, along with the magnitude of the error function is

the value of the learning coefficient. If the learning

coefficient, a. If a is large, there is a tendency for the

weights to fluctuate wildly, increasing the probability that

the weightings will not be able to home in on local or

absolute minima in weight space, especially if the minimum is

deep and narrow in the weight space. Smaller learning

coefficients allow the network to sense the contour of the

weight space more accurately, thereby reducing the probability

that a deep narrow minimum would be missed. The drawback of

the low learning coefficient is that if it is too low, the

weight adjustment will be excessively slow and convergence

time will be extended as a result. Rummelhart, Hinton, and

Williams[Ref.18] recommend a learning coefficient of between

0 and 2 for most applications; Neuralware Incorporated

advocates a learning coefficient from between 0 and 1.
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Further, they recommend that the learning coefficients be

reduced in value as learning progresses so as to allow rapid

exploration of the weight space during the initial learning

followed by increasingly finely tuned adjustments as learning

progresses. Additionally, practical experience indicates that

as one increases the number of processing elements in a

network, the learning coefficient should be reduced[Ref.23].

(4) Modifications to the Delta Learning Rule. In

an effort to improve the speed and efficiency of the basic

Delta Rule, a number of modifications have been suggested. A

major problem in basic delta learning is the tendency of the

algorithm to get locked into small variations of the error

surface in weight space. While the use of small weight changes

reduces the network's tendency to "fibrillate", where the

weights and errors fluctuate wildly with minimal net reduction

in the error function, it seems to increase the network's

vulnerability to these shallow valleys in the error surface.

A simple means to escape these valleys once entrapped is to

change all the weights by a fixed amount and resume learning

from that point. Neuralware's Professional II neural network

simulator provides for this in its jog weights function.

Modifications to the basic learning algorithm

that reduce the vulnerability to this problem include the

inclusion of a momentum term and utilization of a cumulative

error function. The inclusion of a momentum term in the delta
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rule has the effect of increasing the motion of the weights in

the direction of steepest gradient descent by reinforcing the

change in weights in the current vector presentation with a

factor based on the change of weights due to the previous

vector presentation. Here the basic delta rule is altered to:

A -aWPx 1  (p-i) (20)

where 8 is the momentum factor, and p and

p-i refer to the current and previous presentation,

respectively. This has the effect of filtering out the high

frequency variations in the error surface.

In the cumulative delta rule, the weights are

not immediately adjusted after each vector presentation.

Rather, the errors are accumulated over the entire or partial

set of training vectors, called an epoch, and the weights are

then adjusted. This has the effect of adjusting the weights to

minimize the global error function as opposed to the error of

each individual vector. While this greatly reduces the

network's tendency to fibrillate, it also tends to increase

the learning time, as the weights are only updated once each

epoch(Refs.8 and 23]. Nevertheless, the response to the global

error inherent to this modification is increasingly important

as the complexity of the solution space increases and thus is

used extensively in this research.
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5. Unsupervised Learning: An Example

Because unsupervised learning has several inherent

advantages over supervised learning, namely independence from

an extensive data base, it shows great promise in machinery

diagnostics applications and, although it is not employed in

this research, warrants some discussion. An excellent example

of this genre of neural networks is Binary Adaptive Resonance

Theory, (ART1), developed by Steven Grossberg[Ref.24].

The network utilizes two layers of processing elements

interconnected by a series of connections called long term

memory. The lower layer of vectors performs transfer functions

on an input vector and transmits an activation signal to the

second layer via the long term memory connections.

The upper layer utilizes a competitive learning

algorithm and all second layer processing elements currently

possessing reference vectors compete until only one of these

processing elements remains active. The winning processing

element then transmits a signal related to its reference

vector to the lower level and creates a new activation signal.

This activation signal is then compared with the

activation signal associated with the original input vector

and a magnitude of the error between the two is calculated. If

this error value exceeds a threshold, the upper level

processing element generating the new activation signal is

removed from the competition and the other upper level

processing elements possessing reference vectors continue
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competition until there is another winner. It then transmits

a new activation signal to the lower layer and comparison of

the error is compared once again with the threshold.

This process continues until a winning upper level

processing element is able to generate an activation signal

within the error threshold. If no such processing element is

located, " new processing element is brought on line with a

reference vector related to the original input vector. If a

winner is found within the threshold criterion, the original

input vector is incorporated into that processing element's

reference vector.[Ref.6]

This scheme has several inherent advantages. First it

acts as a pattern classifier and does not require the desired

output vector associated with supervised learning to function.

Second, it is capable of placing new patterns outside its

threshold limitations into new categories. Its drawback is

that this particular algorithm is only capable of handling

binary inputs; however, Grossberg has developed other

algorithms with greater versatility and is working on a non-

binary version, ART3, which is still in the developmental

stage.

6. Why Neural Networks?

Neural Networks possess several traits that make them

an attractive alternative to conventionally configured expert

systems. First, many are capable of discerning non-linear
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relationships. Second, they are capable of functi.-.ng with a

certain degree of background noise and erroneous information

with minimal degradation of their pattpen recognition

abilities. Third, they have the ability to generalize, having

the ability to classify previously unseen vector patterns into

existing and in some cases new output categories. They are

also capable of identifying multiple faults. These are all

areas where traditional expert systems typically fall short.

Moreover, neural networks are data based rather than rule

based. This means that they may be capable of correctly

discerning relationships previously hidden from the best of

"experts".

Neural Networks are not without their disadvantages.

They, like all computers, are capable only of manipulating

numbers and require an engineer to discern the intelligence of

their output. Their success is largely limited to the quality

of the data that they are provided. If the input vectors

provided are inadequate to describe the decision space fully,

then their likelihood for success is small. Again, they

require an engineer to provide the proper inputs. Finally,

they may be able to discern new relationships, but the

relationships themselves remain hidden; all that is seen

external to the network are the input and the output vectors.

It is generally believed that the relationships are somehow

hidden in the connection weights and the hidden layers but

meaningful extraction of this information has yet to occur.
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The question might be asked whether a neural network

should theoretically be capable of recognizing patterns in

vibration signatures. Kolmogorov's Theorem indicates that any

continuous function can be represented exactly by a 3 layer

neural network with n input nodes, 2n+1 hidden nodes, and m

output nodes, and presumably mechanical systems can be at

least approximated by at least piecewise continuous functions.

Therefore, at least theoretically, the neural network should

be able to succeed. Unfortunately, nobody has yet been able to

develop a Kolmogorov neural network. Nevertheless,

backpropagation does possess a number of the features

identified by Kolmogorov.[Ref.19]

Neural networks would appear to have potential in

numerous fields, including machinery diagnostics. It is the

task of this research to determine whether this potential can

be realized in the region of machinery diagnostics. In order

to accomplish this it will be necessary to demonstrate the

validity of the claims made above while overcoming the

limitations also duly cited. In order to accomplish both a

good basis in machinery diagnostics theory is required.
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III. MACHINERY DIAGNOSTICS OVERVIEW

Vibration analysis is among the most powerful tools

available for the detection and isolation of incipient faults

in mechanical systems. Among the methods of vibration analysis

in use today and under continuous study are broad band

vibration monitoring, time domain analysis, and frequency

analysis. All have varying degrees of utility in machinery

condition monitoring and diagnostics and have characteristics

that lend themselves particularly well to specific

applications. Since the effectiveness of a neural network is

directly related to how effectively the chosen inputs define

a particular decision space, the selection of the optimum

vibration parameters for inputs to the neural network is

critical. Thus a good understanding of elementary machinery

diagnostics techniques is essential.

A. SOURCES OF VIBRATION

In mechanical systems any mechanical component which

periodically comes in contact with a second component to

transmit an axial, radial or torsional load is a potential

source of mechanical vibration. In a machine with a gear train

the principal components involved with load transfer will be

its torsional power source, such as a motor, the gear meshes,

the bearings, and those items that interconnect them, the
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shafts. Additionally, because vibrational isolation is seldom

complete, additional extraneous sources of vibration will also

be present. The diagnostician is generally interested in

extracting the vibrations created by specific machinery

components and ignoring the other sources as extraneous noise.

In this study we are particularly interested in the vibrations

generated by the rotating machinery's gears, bearings, and

shafts. As such, the discussion will be limited to these

sources of vibration.

1. Gear Vibration

In a gear train, the gear mesh is the dominating

source of mechanical vibration. This vibration primarily stems

from the nonuniformity of the transmission of angular motion

from one gear to its mate. The nonuniformity of the angular

motion occurs due to geometric deviations of the contact

surfaces from the ideal involute shape and the elastic

deformation that any mechanical system undergoes when

transmitting a load[Ref.25]. The geometric deviations are in

turn caused by profile and pitch errors, and variations in the

surface finish of the teeth. Tooth impacts, oil and air

ejection as these fluids are forced across the contact

surfaces also contribute. Finally, torque fluctuations and

deflections of the gear box can also be sources of vibration

in gears. Clearly, any damage that occurs to the gear contact
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surface as well as other mechanical linkages to the gear mesh

will also have an effect on the gear's vibrations[Ref.26].

These factors generally contribute to excitation at

the gear mesh frequency and at the sidebands associated with

the offending gear. The gear mesh frequency is obtained from

the frequency of impacts between the teeth of each gear and is

calculated by the equation,

Fg=NtF, (21)

where F. is the gear mesh frequency, F, is the shaft

rotational frequency, and Nt, is the number of gear teeth.

Regardless of damage present, this signal and its harmonics is

always present. The sidebands are caused by the frequency

modulation of the gear meshing due to backlash, eccentricity,

loading, bottoming, and impacts caused by defects or damage to

the gear. These sidebands generally differ from the gear mesh

frequency by the rotative frequency of the affected gear and

its harmonics[Ref.27]. The magnitude of these sidebands tends

to increase as damage occurs to the gear.

Randall[Ref.28] indicates that a majority of gear

faults can be identified using the frequencies about the first

three harmonics of the gear mesh frequency. Further, while

impact faults can be readily detected at these frequencies,

Favaloro[Ref.29] states that even wear over all of the teeth

is very difficult to detect until the most advanced stages of

47



damage. Because of this most gear faults to be studied in this

research will be due to damage to a single tooth.

2. Bearings

Bearing vibrations occur for much the same reasons as

gears. However, because bearings are not situated directly

along the power transmission train and support largely static

loads, they characteristically generate a small vibration

signal until the damage inflicted upon them reaches advanced

stages. Because of the low magnitude of these signals, they

are often masked by much stronger gear related signals.

Partially because of this belated detection of trouble,

antifriction bearings are among the most common causes of

machinery failure in moderately sized machines.

The frequencies associated with bearing related

signals generally depend on the location of the damage, the

dimensions of the bearings, and the shaft rotation speed. In

general fundamental bearing related frequencies can be

obtained by calculating the impact frequency for a ball in the

bearing impacting a fault on the inner or outer race and the

impact frequency for a fault located on the ball impacting

other bearing components. These impact frequencies adhere to

the following formulae:

Fbo ( -- ) (F.) (I - _ED COS) (22)
2 BD
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FbI - ( ) (F,) (1, -COSO) (23)
F' 2 PD

2BD PD (24)

where F 4 is the outer race impact frequency, Fb, is the

inner race impact frequency, F is the ball impact frequency,

Nb is the number of balls, F. is the shaft rotative frequency,

PD is the pitch diameter, BD is the ball diameter, and 4p is

the contact angle between the ball and inner or outer race.

These formulae reflect the fact that the balls must travel

along the races at a speed that is the average of the relative

tangential speeds of the inner and outer races and the fact

that, because of the smaller diameter at the inner race, the

balls must impact a defect on this race at a higher frequency

than a fault on the outer race.[Ref.27]

While in the low frequency region the calculation of

these frequencies is relatively straightforward, there is also

a tendency for other vibration sources to dominate. Because of

this, many sources recommend that higher frequencies be used

to find bearing signatures. Sandy[Ref.30] recommends that the

region of between one to seven times the inner race impact

frequency be monitored for bearing signals while Collacott

[Ref.31] reports that while 80 percent of bearing faults

demonstrate symptoms at one to two times the impact frequency,
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20 percent manifest themselves at "very high frequencies".

Sandy also indicates that bearing faults can manifest

themselves at frequencies as high as 5 to 35 kHz.

3. Shafts

Shafts generally produce vibration signals at their

rotational frequency and its harmonics. Shafts are also prone

to a number of different faults, all of which register at the

shaft rotative frequency. In the case of bent shafts and shaft

misalignments, the second harmonic is the dominant frequency

in 90 percent of the cases(Ref.31]. Imbalances in the shaft or

load characteristically generate a dominant signal at the

shaft rotative frequency but there tends to be a phase shift

as well. Mechanical looseness can also introduce increases in

the shaft rotational frequency but also characteristically

involves higher harmonics as well[Ref.27].

4. Extraneous Signals

Intertwined with the relevant signals that can provide

the troubleshooter with valuable information are a number of

undesirable signals from countless other sources.

Characteristically they include electro-magnetic signals from

nearby induction motors and other electrical power supplies as

well as vibrations emanating from other machinery in

proximity. Electro-magnetic signals generally occur at

multiples of the power generation frequency and are usually

quite stable, thereby proving fairly easy to identify[Ref.27].
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The other extraneous signals can often be averaged out

of the signal being monitored by utilizing a time synchronous

averaging technique. In this technique, a trigger signal is

transmitted to the monitoring device from a proximeter that is

monitoring the machine in question. The trigger signal then

causes the signal analyzer to take sample measurements for

averaging only at the synchronous speed of the machine being

monitored. This causes the asynchronous signals to average out

to zero as the number of averages gets large. As an

alternative, asynchronous averaging can also be used to

minimize the influence of extraneous noise on the vibration

signal under investigation.[Refs.27 and 32]

Another extraneous source of difficulty when

attempting to monitor a given machine is the tendency for that

machine to change speed from time to time. This generates

confusion in the analysis of vibration signals by shifting the

frequencies associated with various components up or down by

a factor of some multiple of the change in frequency. For

example, if the rotational speed changed from 30 to 31 Hz and

one was interested in a gear mesh frequency for a 15 tooth

gear that is nominally located at 900 Hz, that signal will

change to 915 Hz. If this effect is not taken into account, it

is very easy to misidentify signals. This can be automated

away by utilizing an external trigger source that measures

speed of the machine being monitored and a feature found on

most dynamic signal analyzers called ordering. When activated
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this feature normalizes all frequencies in terms of the

operating frequency of the machine being monitored. This has

the effect of holding the relative positions of the various

frequencies constant so that more trouble free analysis can

take place(Ref.27]. If an external trigger source is not

available, then the frequency shift must be taken into account

mentally or by hand.

B. MACHINERY MONITORING TECHNIQUES

Vibration signals are essentially measurements of a

mechanical system's total dynamic response to all forms of

internal and external excitation acting on the system at a

given time. These measurements can be made using displacement,

velocity, or acceleration transducers. While all of these

measurements have their place in machinery, condition

monitoring, the most popular at present involves acceleration

measurements. These measurements can then be represented in

three ways. The most direct method is to simply measure the

overall level of vibration. However, these measurements tend

to downplay the dynamic nature of the excitation. The least

complicated way to incorporate this is to plot these responses

with respect to time. Another method is to plot these

responses with respect to frequency. This section explores

some of the techniques used to extract pertinent information

using each of these representations of the vibration signal.
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1. Broad Band Monitoring of the Overall Vibration Level

Broad band overall level monitoring provides a broad

level of vibration occurring at a measurement point. This

simple approach is often used for day to day trending of the

relative health of a machine. The setup usually involves a

velocity or acceleration transducer and a vibration meter

which provides an RMS vibration level over a broad frequency

range, thereby being capable of receiving excitation along a

large range of frequencies. While useful in detecting a fault,

it is virtually useless in diagnostics because of the lack of

frequency information. Its capability in fault detection is

also limited since it tends to be most strongly influenced by

the dominant frequencies chatracteristic of the machine. If a

fault occurs on a component not associated with a dominant

frequency, the fault will not be detected until the damage

reaches an advanced stage. However, this method lends itself

to easily portable equipment, is inexpensive, and requires no

special training to use.[Ref.31)

2. Time Domain Vibration Monitoring

A large number of techniques are available that

manipulate the time domain signature of machinery vibrations.

Among these are waveform analysis, index analysis, time

synchronous averaging, and the analysis of statistical

parameters. In a broad band mode these techniques can prove

very useful in detecting machinery faults. By using filtering
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techniques, and narrowing the bandwidth, characteristic

frequencies can be isolated and monitored to provide a useful

diagnostic tool.

a. Waveforn Analysis

Waveform analysis involves the study of the time-

amplitude plot of the vibration signature. It can be used to

determine the degree of randomness in a signal as well as

identify period .cities. Damage affecting a particular locality

on a machinery component can often be identified, especially

after the fault has gone beyond the incipient stage. An

example of a machinery fault in a time domain plot is

presented in Figure 9. Waveform analysis can also be used to

identify beats and vibrations not synchronous with shaft

rotation which are often averaged out in techniques such as

synchronous averaging[Ref.32].

Figure 9 Time Signal for Bent Shaft Fault
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b. Time Domain Indexing

In many condition monitoring programs, it is highly

desirable to reduce the the amount of data recorded to the

minimum required to get the job done. As a result, indexing in

both the time and frequency domain are quite popular. Three

indexing parameters are most common. The first is peak level,

which is merely the maximum value of the vibration over a

given time span. Because it only takes one spuriously high

reading to possibly indicate a fault condition, it is not

considered very reliable. The most commonly used index is RMS

level which is statistically based and can provide fairly good

results. However, as mentioned in the broad band monitoring

section, RMS averaging usually results in masking out the

smaller signals which may be significant. Often, especially in

its earliest stages, a fault condition will manifest itself

through vibration measurements occasionally rising above the

RMS level but not often enough to significantly affect it. To

provide an indication of both peak and RMS values a third

parameter known as crest was developed. This value is simply

the difference between peak and RMS values. In many incipient

faults, this value will increase at first and then, as the

damage builds and RMS level catches up to the peak values, it

will decrease. If a time record is kept such a fault would be

detected; if not, such a fault indication could easily be

missed.[Ref.32]
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c. Time Synchronous Averaging

Time synchronous averaging involves averaging a

signal over a large number of cycles synchronous with the

rotational speed, thus having the effect of eliminating

extraneous vibrations from other machinery components. It is

often used in diagnosing faults in multiple gear trains to

mask out adjacent gear vibration as well as in other areas

where extraneous noise is high.[Refs.27 and 32)

d. Statistical Analysis

A number of statistical parameters which have been

extracted from time domain signals have proven particularly

capable in detecting incipient faults in machinery components.

Among these are included the probability density function,

probability distribution function, and several higher moments

of the probability distribution function.

The probability density function is defined as the

length of time that a signal occurs at a certain amplitude

normalized by the length of the time record over which the

samples are taken. The equation for this is:

p(x X(t)Sx+Ax) t i (25)
ST

where X(t) is a vibration signal, x is a certain

amplitude, Ax is an incremental amplitude, At, is an

incremental time window, and T is the time record length. By
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monitoring the shape of this curve, which for a normal

machinery component takes on the Gaussian bell shape and tends

to widen at the extreme amplitudes with a corresponding drop

at the mean amplitudes as damage occurs, incipient faults can

be detected.

The probability distribution function is determined

by integrating the probability density function over all time.

This function enhances the density function's characteristic

broadening at the extreme amplitudes when damage occurs and

hence can enhance detection of the fault.

The moments of the probability distribution

function follow the general form:

m fx p(x) dx;n=1,2,3. (26)

The first and second moments of the probability density

function are the arithmetic mean and mean square values, used

heavily in this research. The more popular of the higher

moments include the third moment or skewness which when the

mean is subtracted and it is normalized with respect to the

standard deviation, takes on the form:

f(x-i) 3p(x)dx (27)
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Another popular moment is the fourth moment or

kurtosis, which takes on the form,

(x -5i ) 1p ( x ) d x  (28)

V 4

In general, the odd numbered moments indicate the

peakedness of the signal while the even numbered moments yield

indications of the spread of the amplitudes[Ref. 33].

In fault detection the odd numbered moments are

usually around zero whereas the even numbered moments react

strongly when confronted with impact type damage. Thus the

more useful fault detection moments are the even moments.

Kurtosis is considered the more useful than the other even

moments. Kurtosis tends to strike a balance between the mean

square or variance, which are somewhat insensitive to

incipient faults, while higher moments are overly sensitive.

The benchmark for kurtosis is based on its value

relative to that existing for a Gaussian distribution, where

kurtosis is 3.0. If the kurtosis is greater than 3.0 then

damage is probably occurring. Further the location of the

kurtosis greater than 3.0 in the frequency spectrum is

significant, with the higher frequency an indication of

greater damage.(Ref.33]

All of these time domain signals and parameters

have their uses; however, with the possible exception of the
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raw time signal and the connection between the standard

deviation of the amplitude to fault severity, these parameters

are most valuable in the early detection of faults and not so

much with the diagnosis of its location. By far the most

convenient method by which to locate machinery faults

associated with certain frequencies is through exploitation of

the frequency domain.

3. Frequency Domain Vibration Analysis Techniques

Mathematically, the primary method of obtaining a

frequency domain plot involves taking the Fourier Transform of

the time signal:

F(w) = -nf(t) e-'j t dt (29)2

Until fairly recently most analysis of the frequency domain

was extremely time consuming because of the calculation of the

Fourier Transform of the vibration signal was computationally

prohibitive. At this time there was no recource but to use

digital filters to sweep the frequency spectrum to obtain

frequency domain information. With the advent of the Fast

Fourier Transform(FFT), however, the frequency spectrum has

become easily accessible and is currently the most popular

mode of vibration analysis (Ref.311.
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a. Linear Spectrum

The most direct frequency analysis can be

accomplished by observing the linear frequency spectrum, which

is obtained by performing an FFT directly to a time signal.

Its equation in continuous form is identical to that of

Equation (29).

These plots can be modified to present more

elaborate information if they are arranged in a cascade plot,

which plots a series of time consecutive linear specrtra in a

three dimensions. This can prove useful when analyzing

machines undergoing transient conditions butt the time

intervals between the plots becomes limited by the required

size of the time record, which varies inversely with the

frequency span of interest.

In steady state conditions the cascade plot has the

tendency to become excessively cluttered. A variant of this

involve plotting the average of a series of linear spectra.

This tends to mask out spurrious noise and is used to great

extent in this research, where 15 time averages per

measurement were used. Other variants include using the

indicies mentioned in the previous section and using a masking

algorithm which subtracts the baseline from the raw frequency

spectrum[Ref.32].
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b. Power Spectrum

The power spectrum is similar to a linear spectrum

except here the discrete elements of the fourier transform are

squared. The continuous form equation for this parameter is:

T
2

G= =4i F(jc) 12dw (30)

0

where Gxx is the power spectrum, T is the period,

F(jw) is the frequency domain representation of the function,

and w is the angular frequency. This representation is a more

direct representation of the power distribution of the signal,

hence its name[Ref.31]. In general because of the squared

nature of this representation, peaks are more strongly

accentuated than in the linear spectrum. Conversely, valeys

are lower as well, making low value excitations as might be

expected from small lightly loaded machinery components even

more difficult to measure.

c. Cepstrum

Originally the Cepstrum was defined as the power

spectrum of the of the logarithm of the power spectrum, but,

in order for it to appear more similar to the autocorrelation

function, it was later altered to the inverse Fourier

Transform of the logarithm of the power spectrum or:

C(t) = r 1 log{G,(jG)}] (31)
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This parameter has the effect of compressing the

frequency spectrum into families of frequencies of the same

frequency spacing. Thus harmonic frequencies generally

compress into a single "quefrency", as do sidebands. These

parameters have certain advantages over individual sideband

analysis. First, they are more easily detectable as individual

sideband may be masked while the cepstrum, representing the

entire family of sidebands is not. Second, in the diagnostics

of multiple gear mesh and bearing machines it is often

difficult to discern between two different sidebands of

similar frequency modulation. This is exacerbated by the

tendency for the sidebands to change their modulation slightly

from one sideband to the next. This makes identification of

the sideband's origins difficult in some cases. With cepstral

analysis the frequency spacings that tend to float in the

frequency domain are averaged over the entire family of

frequencies. Hence its source is more easily identifiable.

Thirdly the cepstrum has a tendency to normalize its

amplitude, thereby making it much less susceptible to

extraneous vibrations. In this research, the cepstrum

decibel(dB) level variation over a series of tests remained

small whereas the changes from sideband to sideband could be

commonly as large as 8.0 dB(Ref.35]. While sideband analysis

appears to be one forte for the cepstrum, it has also been

noted to be very successful in identifying bearing related

faults as well, being documented as the principle indicator
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for bearing faults in at least one rule based diagnostic

system[Ref.36].
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IV. A SIMPLE MACHINERY DIAGNOSTICS MODEL

In order to explore the behavior of backpropagation neural

networks in a machinery diagnostics environment a series of

experiments were conducted using very simple machinery

diagnostics models. The purpose of these experiments was to

determine whether the application of neural networks in

machinery diagnostics warranted further study. In addition, it

was intended to utilize a series of these simple diagnostics

models as the basis for the more complicated follow-on

marhinery diagnostics systems to be discussed in detail in

ChjAter VI.

A. PROBLUM FORMUIATION AND MODEL DESCRIPTION

In these experiments a simple diagnostic model was

established based on current practice in machinery condition

mctitoring programs aboard U.S. Navy surface ships. In these

programs, vibration data is obtained periodically by condition

monitoring teams, who then send the data ashore for analysis.

During the analysis an extensive data base is accessed and the

current readings are compared to an established baseline and

a magnitude difference in decibels(dB) is obtained. In the

current Navy program, a general fault condition is deemed to

exist when the current amplitude exceeds the baseline by more

than 6.0 dB, barring experientially based dB differences to
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the contrary.[Ref.36] The model used for the preliminary

experiments monitored four discrete frequencies each

associated with a separate machinery components in a

hypothetical rotating machine. Amplitude readings would be

taken at each of the associated frequencies and compared to a

baseline. The absolute value of these dB differences were then

entered as a single four dimensional vector into a neural

network consisting of four input PE's, any number of hidden

PE's, and four output PE's. The output required was a severity

indication for each of the inputs based on the rules cited in

Table I.

Table I Simple Model Severity Criteria

dB Difference Network Desired Nomenclature
Output

0.0 - 2.5 dB 0.0 No Fault

2.5 - 4.0 dB 0.3 Low Severity

4.0 - 6.0 dB 0.6 ModerateE4.0 0.6_ Severity

6.0 + dB 0.9 High Severity

These severity levels would be associated with a specific

course of action to be taken by the operator. For example, if

a low severity indication was received it might warrant more

frequent observation; if a moderate severity level was

indicated, it might warrant replacement at the next scheduled
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maintenance period; if a high severity level registered,

immediate replacement might be warranted.

B. NETWORK ARCHITECTURE

The neural network employed consisted of a three layer

network utilizing the normalized cumulative backpropagation

algorithm. An illustration of this preliminary network is

provided in Figure 10.

Component I Component 2 Component 3 Component 4

Severity Severity Severity Severity

~Output L- yeT

Hidden

Connections

Component I Comopen' 2 Component 3 Component 4

input Input Input

Figure 10 Simple Machinery Diagnostics Neural Network

The normalized cumulative backpropagation alqorithm was

selected because of its tendency to smooth out oscillations in
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weight changes by adjusting weights once each epoch of vector

presentations, thereby tending to minimize the global error

rather than the local error associated with a single vector.

While a standard backpropagation network was tried, learning

became unacceptably slow with the weights and errors

fluctuating wildly with little net improvement in RMS error.

All processing elements in the hidden and output layers

utilized the hyperbolic tangent transfer function; the input

processing elements were not influenced by a learning rule and

employed purely linear transfer functions. All processing

elements were connected to a weighted bias whose excitation

was continuously 1.0 but whose weights could be adjusted.

While the sigmoid transfer function may be currently more

popular for backpropagation, the ability of the hyperbolic

tangent to provide negatively signed outputs seemed

advantageous for use in follow-on networks. As research

continued, it was found that networks utilizing negatively

signed input and output vectors had difficulty in converging

satisfactorily. Consequently, this feature was ultimately not

capitalized on. The layer architecture with the input

processing elements not directly participating in learning and

the employment of the bias element are standard features of

the backpropagation algorithm[Refs.8 and 18].

The optimum number of processing elements to be used in

the hidden layer was difficult to determine precisely. To

obtain a better understanding of this parameter, it was
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decided to verify some of the work accomplished in chemical

process diagnostics by Venkatsubramanian and Chan[Ref.2] on

this parameter but using networks designed for mechanical

diagnostics.

C. EXPERIMENTAL PROCEDURE

Initially a training set was established by building input

vectors reflecting dB differences from an established baseline

at the characteristic frequencies for four ficticious

machinery components. These input vectors provided generally

constisted of three inputs within the dB region correlating

with a severity response of zero and one corresponding to a

higher severity response. Additionally sample vectors having

no faults and a few vectors reflecting multiple faults were

included.

This training set consisted of 48 vectors. This number of

vectors was based on practical experience that it was best to

use a minimum of between three to five vectors per processing

element when conducting training[Ref.23]. An example of these

training sets as well as a test set and a network response are

included in Appendix A.

The number of processing elements in the networks

investigated was based on the conventional wisdom that

recommends that the hidden layer consist of betwec iu one and

two times the number of processing elements in the input

layer. Networks containing four,five,six, and eight processing
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elements in their hidden layer were trained and tested

utilizing this training set. However, since it was reported

by Marko et al[Ref.5] that success was obtained using fewer

hidden elements, training was attempted using three and twelve

hidden elements as well.

During the training process, the number of training

iterations required to reach certain discrete RMS errors were

noted. While RMS error is useful in determining how close

actual network response compare to desired response, it is

based on the samples actually used in training. It tells

nothing about what level of success can be expected when

presented with new data with which it will be required

to make a diagnosis. To provide an indication of this, test

sets containing input vectors not previously presented to the

network during training were used. Two test sets were used,

one containing 15 vectors, and the other containing 16

vectors. These vectors included a number of examples near the

borders of each defined severity region and a few multiple

fault examples.

The "grading" of the test outputs was somewhat arbitrary.

While overall RMS error experienced in the test set may have

been useful, there may have been a clear separation of fault

levels even though the error calculated exceeded the RMS error

to which the network had been trained. Accordingly, a test

grading criterion of "go" or "no go" was employed wherein an

arbitrary 0.15 threshold level was established about each
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desired output severity level. If the actual output vector was

within the threshold, at all nodes, the network had responded

correctly and received "full credit". If the actual vector

output exceeded the threshold but never crossed into a region

established by actual output of the network corresponding to

another severity level, it was considered marginally correct

and received "half credit". This reflects the fact that while

it may have exceeded the threshold, no misdiagnosis had really

occurred. If any other result occurred, the network received

"no credit" for that particular test vector presentation.

D. EXPERIMENTAL RESULTS

A summary of the results is provided in Figures 11 and 13.

Initial learning was most rapid for the six hidden element

network, which reached an RMS error rate of 0.15 in 1350

vector presentations. The four, five, and eight hidden element

networks took 88%, 71%, and 136% more iterations respectively

to arrive at the same level of convergence. However, the six

hidden element network proved slowest to improve this level of

convergence to 10% RMS error, requiring 72,500 iterations

compared to 33%, 20% and 41% of that number for the other

networks. The three and 12 hidden element networks were used

to explore the stability of the network during the early

stages of learning and were not run to particular convergence

levels. Consequently they are not included in Figures 11 and

13. Nevertheless it can be reported that the three hidden
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Figure 11 RMS Error Versus Number of Iterations

element network required in excess of 15,000 iterations to

reach a RMS error level of 0.15. The 12 hidden element network

required in excess of 36,000 iterations to reach an RMS error

level of 0.25.

Observation of each network's response during the early

stages of training is also noteworthy. The low hidden element

networks tend to learn more rapidly at first but reach a

plateau in error rate, whereafter learning is slow. At high

numbers of hidden elements, the learning is characterized by

a degree of instability, where RMS error levels fluctuate

considerably and large errors are prone to occur. In these
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networks, learning is also extremely slow from the outset,

presumably due to processing elements in the hidden layer

competing with one another for a limited number of features in

the decision space. A sketch of the RMS errors from the start

of learning to about 2000 iterations is provided in Figure 12.
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Figure 12 RMS Error During the First 2000 Iterations

Test results were similar but not identical to training

RMS results. The least successful network at the same RMS

level was the four hidden element network with a 71% success

rate. At RMS error levels of 0.15, 83.9% successful responses

were obtained by the five and eight hidden element networks.
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At an RMS level of 0.10, the eight and four hidden element

network improved to 87.1% while the five hidden element

network remained the same. Overall, success rates improved

little after an RMS error level of 0.15 had been reached;

however, the bandwidth of the test responses constricted about

the desired severity levels considerably, making it much

easier to determine the severity level as training continued.

A major source of the errors that did occur involved the

test vectors that explored the boundaries between severity

levels. This is not terribly surprising as neural networks are

by nature analog systems which are not particularly adept at
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precise numerical calculations[Ref.19]. This is also the same

region where a biological "expert" would have the greatest

difficulty. In the case of the six hidden element network, the

number of test errors actually increased following extensive

training. This would appear to be an example of overtraining,

where the pattern features of the training set become so

closely mapped, that generalities associated with the actual

decision space represented by the training set are missed.

As mentioned previously, several multiple fault cases were

presented to the network during the testing phase. Although a

few multiple faults were included in the training set as well,

it is highly encouraging to observe that the networks all

responded well to these multiple faults. Additionally, during

one of the training phases, it was discovered that one of the

input vectors had an erroneous desired output listed. The

training file was corrected and learning was allowed to

continue. After a number of iterations, the network in

question performed as well on the previously faulty vector as

on any other. This demonstrates that backpropagation networks

have the ability to update themselves with new data without

having to start afresh. On the other hand it also demonstrates

the network's ability to forget old data if it is removed from

the training set. Tables of a sample of the test sets and

training sets utilized in these preliminary experiments are

provided in Appendix A.

74



E. DISCUSSION OF RESULTS

Based on the results of the preliminary experiments

delineated above, it would appear that the optimum number of

hidden nodes within a certain range depends on one's

priorities. If one is interested in rapid learning possibly at

the expense of the level of convergence and corresponding

performance on test sets or in the field, use of a minimal

number of hidden elements commensurate with getting the

convergence level required would be in order. In this case

either four or six hidden elements would suffice. If one is

more interested in accuracy rather than speed of convergence,

then a higher number of hidden nodes, such as six or eight in

this case, would be in order. If excessive numbers of hidden

elements are used, the network tends to become unstable, as in

the case of 12 hidden elements. If too few hidden elements are

used the level of convergence remains excessively high and

rate of convergence becomes excessively slow. However, within

the range of converging networks, it would appear that the

number of hidden elements is immaterial, provided that a

satisfactory level of convergence is met.

The ability of the backpropagation neural networks to

train on updated data without having to start afresh as well

as their ability to identify multiple faults is highly

encouraging, as these are both areas where conventional expert

systems have some degree of difficulty.
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Nevertheless, thus far, all that has been accomplished is

a mapping of a dB difference to a somewhat arbitrarily derived

severity level. A few lines of FORTRAN code could do the same

thing. Furtermore, the use of single frequency inputs to

identify machinery faults is somewhat oversimplified. A more

sophisticated diagnostics model is required to determine the

feasibility of neural networks in the field of machinery

condition monitoring and diagnostics. Such a model is

described in the following chapters. However, the neural

networks so employed have their basis in the model described

here.
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V. DIAGNOSTIC SYSTEM PROTOTYPE: THE PHYSICAL MODEL

This chapter describes the medium complexity rotating

machinery for which the diagnostic system was designed as well

as the equipment utilized to monitor it. It also describes the

nature of the machinery faults imposed, the portions of the

vibration medium utilized for inputs for the neural network

and the basis for these inputs. The procedure by which the

experimental data was obtained is described and finally, the

data obtained from the physical model is presented and

analyzed.

To determine whether neural networks could be utilized in

a machinery condition monitoring and diagnostics application,

it was decided to develop a neural network diagnostic system

for an uncomplicated piece of machinery that could be easily

supported in a laboratory environment. This physical model

would have to possess components that could be damaged with

minimal expense in order to create the fault conditions for

diagnosis.

A. MODEL DESCRIPTION

The medium complexity gear model utilized for these

experiments was based on the machinery utilized in

Robinson's[Ref.37] experiments on statistically based
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Figure 14 Medium Complexity Gear Model

vibration data. A schematic of this machinery is presented in

Figure 14. It consisted of a single reduction gear train

consisting of a 15 tooth drive gear (Gear 1) and a 50 tooth

driven gear (Gear 2). The gears were both Martin 20 diametral

pitch 3/8 inch face hubbed spur gears with a 14.5 degree

pressure angle. Each was attached to a 3/8 inch diameter

shaft by means of a set screw recessed in the hub which

allowed for easy removal.

The shafts were each supported by two Fafnir 3/8 inch bore

radial ball bearings. These bearings were mounted in aluminum

block housings which were in turn bolted and glued onto a 1.0
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inch thick plexiglass slab which rested on a heavy cast iron

base. A vibration absorbing sheet was placed between the

plexiglass and cast iron base to minimize the influence of

extraneous vibrations on the system.

The drive shaft was connected to a 1/15 horsepower 0.75

Amp 115 volt variable speed DC motor by means of a rubber

flexible coupling made from a piece of automotive fuel hose.

The fuel hose coupling had the advantage over other flexible

couplings in that it was inexpensive, easily replaced, and

allowed for greater vibrational isolation between the motor

and the gear train. This had the effect of improving the

isolation of the gear train from vibrational influences of the

motor while permitting small misalignments between the two

components.

A frictional load was imposed on the drive train by means

of a 3.0 inch pulley wheel which was allowed to work against

a rawhide thong onto which was hung a 10 pound weight. The

uniformity of the applied load was further enhanced by using

a teflon fairlead to hang the weight over the side of the

base, thereby reducing variable frictional effects on the

rawhide thong.

Motor speed was made adjustable by means of a Bodine

Electric Company combination rectifier and variable

potentiometer speed controller. This simple feed-forward speed

controller was manually adjusted to the desired speed of

operation by metering shaft RPM's with a Power Instruments
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Model 1720 RPM indicating optical proximeter. In these

experiments, shaft speed was maintained at as near to 30 Hz as

possible.

B. VIBRATION MONITORING EQUIPMENT

The principle components of the vibration monitoring suite

used in this experiments were a PCB Model 303A03

accelerometer, a PCB Model 480D06 accelerometer power supply,

a Hewlett Packard Model 3562A Dynamic Signal Analyzer, a

Iwatsu Model SS5702 20 MHz Dual Channel Oscilloscope, a Gould

Type 1421 20 MHz Digital Storage Dual Channel Oscilloscope,

and a Hewlett Packard Model 7035B X-Y recorder. A schematic of

their arrangement is provided in Figure 15.

1. PCB Model 303A03 Accelerometer

The PCB Model 303A03 Accelerometer is a medium range

high frequency miniature accelerometer, based on a

piezoelectric quartz transducer sensing element. This

accelerometer possesses the following parameters:

" Sensitivity: 10 mV/g

" Resonant Frequency: 70 kHz

" Range: ± 500 g

" Resolution: 0.02 g

• Size: 0.28 X 0.4 in

" Weight: 2.0 gm
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Figure 15 Vibration Monitoring Equipment Arrangement

The accelerometer was mounted in a radial position

directly above the bearing supporting the shaft driven by the

50-tooth gear closest to the gear itself. It was affixed to a

permanently attached mount by means of mounting wax and

thereby was not itself permanently affixed.

The accelerometer output voltage was amplified by a

PCB Model 480D06 power supply which provided a DC power source

with which to amplify the signal. During the entire experiment

this power supply was set up to amplify the accelerometer

output by a factor of 10.0.
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2. Hewlett Packard 3562A DSA

The heart of the vibration monitoring system was the

HP 3562A Dynamic Signal Analyzer (DSA). This is a dual channel

FFT analyzer capable of measuring the complete spectrum of

vibration parameters, including time domain and statistical

parameters as well as the more traditional linear and power

frequency spectra. It is also capable of a large number of

mathematics functions, including the performance of the

logarithmic functions and inverse Fourier transforms required

for Cepstral analysis. In these experiments, the DSA was

primarily used to measure the linear frequency spectrum from

0.0 to 1500 Hz and the Cepstrum over a similar range. The

baseline parameters utilized during these experiments are

provided in Figure 16.

3. Peripheral Equipment

A number of time domain monitoring and plotting

devices were used alongside the 3562A DSA. Because the DSA is

somewhat restricted in the length of time signal that can be

measured at a given time due to time record length constraints

inherent to the FFT, a Gould 1421 recording oscilloscope was

utilized in conjunction with a HP 7035B X-Y plotter to record

time signals of interest whose features warranted a time

length other than that of the time record.Additionally, an

Iwatsu SS5702 Oscilloscope was substituted for the Gould to

provide an additional means to observe the time signal while
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Figure 16 Experimental Operating Parameters for the
HP3562A DSA

the HP 3562A DSA was otherwise occupied. Additional

accessories to the 3562A DSA which proved invaluable during

the data acquisition and storage phases of the experiment were

the HP color pen recorder and HP 9122 hard disc drive.

C. DETERMINATION OF MONITORED PARAMETERS

By far the most critical decisions in this study involved

a determination of the vibration parameters to use as inputs

to the neural networks. In order for the network to perform

its task adequately, two things must occur. First, the

dimension of the input vector and the corresponding number of
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input PE's must be sufficient to thoroughly describe the

decision space which the network is tasked with categorizing,

whether this be a range of signal pattern or machinery

diagnostic faults. Secondly, especially in the case of

performance based learning algorithms such as backpropagation,

the training data must be sufficiently varied to reflect the

range of decisions expected of the network and must be of

reasonably good quality. The neural network may be

categorically tolerant of noisy data, but it is still subject

to the adage, "garbage in, garbage out." Additionally, the

computational load imposed by the neural network during the

training phase is a function of the number of processing

elements involved, and thus indirectly is a function of the

number of inputs. Therefore it is desirable to keep the

dimension of the input vectors to the minimum necessary to

describe the decision space.

In Chapter III it was stated that in this research the

machinery faults of particular interest were those associated

with the gears, bearings, and shaft misalignments. This is

also the limit of the rotating components available in the

uncomplicated machinery under investigation. The choices of

inputs therefore were restricted to parameters associated with

these components.

The question of which medium to employ as the principal

source of inputs was critical. Robinson[Ref.37] found that

statistical measurements of the time domain were superior to
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those of the frequency domain for the detection of machinery

faults, especially gear faults. This is corroborated by the

work of Matthew and Alfredson[Refs.26 and 38] state that ime

averaged signals and matched filtered spectral signals should

be capable of detecting gear anomalies long before

conventional spectral analysis. However, the main thrust of

this work concerns isolating the location of the fault, which

is much more directly accomplished in the frequency domain,

unless a long series of different filtered time signals are

used. As this was once the method of measuring the frequency

domain before the advent of the Fast Fourier Transform, this

really is just another form of spectral analysis.

Additionally, while the HP 3562A DSA is capable of statistical

time domain analysis, it is better suited to analysis of the

frequency spectrum. Further, to measure statistical parameters

in the time domain, the DSA requires the use of an accurate

RPM indicator to provide a trigger signal. Although the

proximeter in use to measure shaft speed was sufficiently

accurate to provide a trigger signal, it tended to become

erratic when having difficulty in establishing an optical

reference. As a result, time domain statistical parameters

were not employed as inputs to the diagnostic system. However,

during the data acquisitiGn stage, some time domain signals

were recorded for reference. Consequently, the frequency

spectrum was used as the primary source of diagnostic

information.
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Determining the frequency inputs for the gears was fairly

straightforward. Randall[Ref.38] recommended that monitoring

in the vicinity of the first three harmonics of the gear mesh

frequency would provide for earliest detection of uniform wear

gear faults. With the physical model operating at 30 Hz, using

equation (21), the gear mesh frequency was calculated to be

450 Hz.

It is also well known that damage to the gears is most

often characterized by the growth of the sidebands associated

with the rotating frequencies of the gears within the mesh.

There are many suggested methods of representing this. One

such method involved observing the magnitude of the spectrum

one shaft rotation frequency up and down from the gear mesh

frequency. This took into account the observation that the

first sideband seemed most sensitive to gear damage. Another

proposed method involved integrating the frequency spectrum

and taking the limits of integration from one or two

sidebands on either side of the gear mesh frequency. This took

into account the idea that the severity of the fault was

proportional to the energy level of the frequency response of

the system. A final possibility is to simply take the average

of the first three sidebands associated with each gear on

either side of the gear mesh frequency. This has the advantage

of being easier to calculate than an integral and yet is

essentially a normalized integral. Further, it takes into

account the existence of more than the first sideband and
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tends to add stability with respect to successive

measurements. As the input into the neural network is based on

the dB difference from a baseline and is relativistic in

nature, the averaging does not detract from its utility and

offers an excellent compromise between the other two options.

Randall(Ref.34] reported good results in the use of

cepstral analysis in gear diagnostics and presented several

practical points in its implementation. As the effect of the

cepstrum is to compress whole families of harmonic frequencies

into a single quefrency and perhaps one or two rahmonics, it

seems an ideal parameter by which to identify sideband growth.

Thus the quefrencies associated with the 9.0 and 30 Hz

sidebands were employed as alternative inputs to the averaged

sidebands obtained from the frequency domain.

Bearing parameters were somewhat more difficult to come

by. While impact frequencies for the inner and outer race as

well as the balls themselves are easily derived, they

invariably occur at low frequencies, where they are obscured

by the higher energy impacts associated with the gears as well

as extraneous noise. As a result, it is recommended that one

look to high frequency harmonics for this information.

Regrettably, in preliminary sweeps of the frequency spectrum

up to 3000 Hz, no high frequency signals associated with the

bearings were detected. This is probably a result of the small

size and light loading of the particular bearings involved.

Nevertheless, some weak signals were noted at the first and
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second harmonics of the inner and outer race impact

frequencies. As a result, these frequencies associated with

the 30 Hz shaft bearings, as well as the ball impact frequency

were monitored in the hopes that something might become

discernible when a bearing casualty was imposed.

As in the case with gears, bearing impacts are readily

discernible on analysis of the cepstrum. Van Dyke[Ref.35]

reported excellent results with cepstral analysis on the

detection of bearing faults in maritime propulsion plant and

auxiliary machinery aboard U.S. Navy aircraft carriers.

Consequently the quefrencies associated with the 9.0 Hz shaft

bearings were also monitored.

Collacott and several others[Refs.27 and 31] indicate that

the bulk of shaft imbalances and misalignments are detectable

at between 0.5 and 2.0 times the shaft rotative frequency.

Consequently, the first two harmonics of each shaft were

monitored.

In summary, the following frequencies and quefrencies were

monitored.

• The gear mesh frequency and the next two harmonics; 450,
900, and 1350 Hz.

• The average of the first three of the 9.0 and 30 Hz upper
and lower sidebands surrounding the gear mesh frequency
and its harmonics.

• The cepstral quefrencies associated with the 9.0 and 30 Hz
sidebands; that is, 33.3 and 111 ms.

* The average of the cepstral rahmonics associated with the
sidebands where available; that is, 33.3 ms and its next
two rahmonics.
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6 The first two harmonics of the 30 Hz shaft bearing inner
race defect and outer race defect frequencies; that is,
118, 236, 92, and 184 Hz.

. The 9.0 Hz shaft bearing ball defect frequency;that is,
103 Hz.

. The bearing related quefrencies, 8.5, 9.7, and 10.9 ms.

* The average of the first three rahmonics of the 10.9 ms
quefrency.

• The shaft rotative frequencies and their next harmonics,

9.0, 18, 30, and 60 Hz.

Several additional frequencies were recorded as their

prominence became apparent. However, as these frequencies were

not recorded in all of the experiments, they were not utilized

as inputs to the neural networks that follow.

D. DATA ACQUISITION PROCEDURE

The physical model was utilized to extract the frequency

spectral and cepstral data delineated in the previous section.

The first tests were conducted over the period of several days

with all mechanical components in their normal operating

condition in order to establish a baseline. The machinery

components were then systematically subjected to damage with

one new perturbation per test. In each test, the following

general procedure was adhered to.

Prior to any data extraction, any new machinery components

to be employed in the test were worn in over several hours at

the operating speed of 30 Hz. This was particularly necessary

for the gears whose associated parameters would vary from
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reading to reading until they were worn in and all blacking

had been removed from the gear tooth contact surfaces.

In addition to this wear-in time, which was only imposed

on tests involving new components, all tests were subjected to

a mandatory 45 minute stabilization period during which no

parameters were recorded. This was determined to be a

sufficient time period for the machinery to reach a state

where the parameters monitored became statistically stable and

the readings largely became repeatable to within 3.0 dB.

Following the stabilization period, the recording of

parameters began. Although the Gould digital storage recorder

was not available throughout the experiment, it was utilized

extensively when available to record time domain signatures in

conjunction with the HP X-Y plotter. This was used to record

any portion of the time signal that may have been of interest.

Following recording of the time signal, a series of narrow

band linear spectrum plots were obtained using the DSA and its

color pen recorder. All parameters recorded from the DSA

utilized a stabilized mean with 15 averages. The irrow band

linear spectrum plots covered the pertinent '-ections of a

broad band region from 0 to 1535 Hz. Specifically, recordings

were taken with a frequency band of 312 Hz with starting

frequencies of 0, 300, 750, and 1200 Hz. Following this a

broad band power spectrum was obtained with a frequency span

of 1535 Hz. The log of this plot was then taken followed by an

Inverse Fourier Transform, rsulting in a broad band cepstrum.
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This was performed automatically using the Cepstrum function

of the DSA.

During the first set of readings in a given test, plots of

all frequency spans and the cepstrum were recorded. Subsequent

readings were not accompanied by recorded plots; only the

parameters of interest were recorded. A total of between six

and eight of these sets of readings would be taken in a given

test to ensure a statistically stable data base and to

establish a larger number of sample vectors with which to test

and train the neural networks. As a result of the procedures

delineated above, each test took approximately four hours to

accomplish.

Following the recording of the entire test set, means and

sample population standard deviations were computed for each

parameter obtained. The purpose of this was twofold. First the

statistical parameters allowed a judgement to be made about

the stability of the data and consequently its repeatability.

It was also hypothesized that the variance in the standard

deviation of the readings could be indicative of the severity

of the impacts at that frequency and thus could prove to be a

useful diagnostic tool. Secondly, observation of the mean of

each of the parameters enabled comparisons between tests to be

made at a glance, thereby providing an indication of how well

the parameters could be expected to represent the diagnostic

decision space for the model.
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E. PRESENTATION OF EXTRACTED DATA

A total of twenty two test sets were conducted using the

simple gear train model. Of these three sets involved entirely

undamaged machinery and were used to establish the baseline

and provide data for "normal" equipment readings. Nine tests

were conducted with various levels of damage imposed on the 15

tooth pinion, hereafter identified as "Gear 1". Four tests

were conducted with various levels of damage imposed on the 50

tooth gear, hereafter identified as "Gear 2". One test was

conducted with damage imposed on both gears. Two tests were

conducted involving bearing damage and three tests were

conducted involving shaft imbalance and misalignment. These

tests are summarized in Table II.

1. Tests Involving Undamaged Equipment

A number of tests were conducted to establish a

baseline but ultimately only three of these test sets were

utilized in the neural networks. These tests featured a rather

wide range of amplitudes in spite of the efforts to allow the

system to stabilize. In fact, the variation of normal readings

would appear to exceed that of damaged machinery by a

significant margin.

Figure 17 illustrates the time signal for an undamaged

machine.Figures 18 through 21 illustrate a sample set of 312

Hz span linear spectra for normal machinery. Figure 22

illustrates the broad band cepstrum for the undamaged
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Table II. Summary of Tests Performed on Physical Model

-o - --
Test Shaft Shaft Brng. Brng. Ball Gear Gear

1 2 O.R. I.R. Def. 1 2

Norl -1 .......

Nor 2 ...... -

Nor 3 -.....

G1-1 .- - Mod

G1-2 - - - High -

GI-3 .. - - Mod

G1-4 .. - - Low

G1-5 .. - - Low

G1-6 .- Mod

G1-7 .- Mod

G1-8 .- High -

G1-9 .- High -

G1-10 .- High Mod

G2-1 .-. Mod

G2-2 .- High

G2-3 .... - Low

G2-4 .- Mod

B1 - - Low Low Low Mod Low

B2 - - Low Low Low - -

S1-1 Mod ......

S2-1 - High - - - Low -

S2-2 - High .....

Low: Low Severity; Mod: Moderate Severity; High: High
Severity; G=Gear; S=Shaft; B=Bearing

machine.The frequency spectra are accompanied by the time

record plots from which they were derived. In the frequency
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spectra the gear mesh frequencies as well as numerous

sidebands for both the 9.0 Hz and 30.0 Hz gears are readily

identifiable.

i1 -1 1, 4 V i . .. ' '' .. i: 1-:. [

Figure 17 Time Signal for Undamaged Machine 5V/5ms per
Division

Additionally, there are dominant signals at 30, 90,

180, and 270 Hz visible on the 0 to 300 Hz plot, Figure 18.

The dominant signals at 90 and 180 Hz had a tendency to

obscure the first two harmonics of the bearing inner race,

thereby reducing its effectiveness in diagnosing bearing

faults. However, as these frequencies turned out to be

resonant frequencies for the system, they provide a good

indication of the overall degree of excitation of the

system. As a result, these particular readings were retained

for the neural networks even though their utility in

identifying bearing faults became increasingly doubtful as the

experiments wore on.

A note concerning the appearance of the time records

in Figures 5 through 8 is in order. The periodicities noted in
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Figure 18 Linear Spectrum for Undamaged Gear 0-312 Hz

the higher frequency time records correspond to the 9 and 30

Hz sidebands. While the shaft rotative frequencies may be

filtered out of the signal, these sidebands are not, resulting

in the peculiar appearance of the time records.

The results of these tests are summarized in Table

III. A baseline was established by obtaining the average of

the first two test sets. The baseline standard deviation was

based on the propagation of error formula,

1

= (o .(.1 .o2) 2 (32)
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Figure 19 Linear Spectrum for Undamaged Machine 300-612 Hz

This baseline standard deviation was used as a threshold for

the first severity level in the in the moderate complexity

diagnostics model described in Chapter VI in the same manner

as the 6.0 dB rule mentioned in Chapter IV. Severity levels

for moderate and severe damage levels were generated using the

largest test standard deviation involved or a value of 2.0 dB,

whichever was larger. A summary of this baseline

data is provided in Table IV.

Establishing a severity rating for the faults actually

imposed on the various machinery components became a rather

delicate task. Although establishing a severity criterion
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Figure 20 Linear Spectrum for Undamaged Machine 750-1062 Hz

after the measurements were taken based on the recorded dB

differences was considered, it was feared that this

methodology would be analogous to fitting the data to

match the theoretical model, which is not good practice . This

methodology would also run counter to the purpose of a

machinery diagnostics system, which is to determine the

severity and location of the actual fault, and not merely its

symptoms. As a result, severity levels loosely based on the

extent of the physical damage were established. If, in the

author's estimation, the damage was severe enough to warrant

replacement at first opportunity, a severity rating of
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Figure 21 Linear Spectrum for Undamaged Machine 1200-1512 Hz

"severe" was determined. If the level of damage was sufficient

to warrant replacement at the next scheduled maintenance

period, then a severity rating of "moderate" was established.

If the fault condition existed but was sufficiently light to

warrant continued operation with an increased level of

monitoring, a severity rating of "light" or "low" was

provided. For example, if a gear tooth was completely broken

off, a severe damage rating was assigned; if a gear tooth had

wear inflicted such that the involute shape was just barely

affected, a low severity rating was assigned. These severity

levels may seem rather arbitrary but, when due consideration

98



X-62.SmSec
Ya-66.2926mV2
A: CEPSTM 15Av 0%Ovl p
1.0

125
m

/D Iv _____ __

Reml .1 __ _ _ ___

V 2

0.0 Jj aL i

FxdXY 0.0 Sec NORMAL 120m

Figure 22 Cepstrum for Undamaged Machine 0-1535 Hz

of the difficulty in equating a specific degree of physical

damage in a gear with a similar level of damage in a bearing

or shaft, this methodology is the only plausible solution.

A quick view of Table III reveals a significant

variation between the undamaged machine in Test 3 and the

other two tests. This is due to the replacement and wear in of

two new gears following a machinery casualty. In keeping with

standard practice following a major overhaul of a machine, a

new baseline was established at this point for subsequent

measurements based solely on this test.
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Table III. Summary of Means and Standard Deviations for
Vibration Amplitudes(dB) for Undamaged Machinery

FT W)cY 9.0 18 30 60 92 118 184 236 103 450 9SB

Normal -60.0 -58.5 [64.9 -63.6 -53.2 -70.5 -44.2 -63.8 73.2 18.8 -48.0
No. 1 2.5 1.2 2.0 2.4 0.5 1.4 2.6 4.2 1.1 0.5 1.0

Normal -62.2 -64.8 61.2 -52.7 -56.6 -70.9 -41.7 -66.6 -74.3 14.4 43.7
No..2 4.3 2.4 1.8 2.5 2.7 3.0 4.1 3.1 1.4 1.8 1.5

Normal 61.8 -63.9 67.2 [48.3 [69.4 -74.0 52.0 66.9 -74..4 -16.3 33.4
No.3 2.6 3.8 1.0 1.5 2.6 2.3 5.1 2.7 1.0 1.2 1.2

__ _- - - - - - - - SB - Sideband
(V) 3oSB 900 9sB 3oSB 1350 9SB 3oSB Average

Normal -41.4 -18.7 -39.9 -37.8 -19.0 -35.4 -33.2 Av- Average of
No.1 1.9 0.5 1.1 1.7 1.2 1.8 1.3 firs three

Normal -38.9 -17.4 -40.7 -36.9 19.1 -32.7 -32.4 rahmonics
No.2 1.5 1.8 1.1 1.0 3.2 2.3 0.8

Normal 41.0 17.1 -32.3 -39.9 -25.4 -30.4 340
No.3 1.2 1.6 1.4 1.6 1.9 1.8 1.0

,uefrency
ims) 9.7 8.5 10.9 10.9Av 333 33.3Av II I

Normal -7.3 -6.8 -4.2 -5.9 -4.6 -5.1 -6.6
No.1 0.2 0.5 0.5 0.4 0.7 0.4 1.0

Normal -7.6 -5.9 -3.2 -4.9 -4.1 -3.7 -6.7
No.2 0.6 0.3 0.4 0.6 0.5 0.5 0.8

Normal -7.7 -5.3 -6.0 -7.8 -7.6 -7.8 -10.9
No.3 0.5 0.3 0.6 0.4 0.5 0.4 1.4

2. Faults to the Drive Pinion

The first and most comprehensive series of tests

conducted involved imposing progressively more severe damage

on the 15 tooth drive pinion which was operating at the

nominal speed of 30 Hz. These tests loosely followed the

procedural pattern established by Robinson[Ref.37] during his

work on statistical parameters in machinery diagnostics.

a. Description of Damage

The first test conducted involved an almost

vertical filing down of the engaging face and flank of a

single tooth of the drive pinion and a shallow second cut
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Table IV. Baseline Decibel Levels
FrTWency 9.0 18.0 30.0 60.0 92.0 103 i8 184 236

Baseline 1 -61.2 -64.6 -57.6 -52.7 -55.0 -74.4 -70.8 -41.2 -64.4
4.5 4.5 4.1 2.5 4.1 2.0 3.6 6.6 5.9

Baseline 2 61.8 63.9 67.2 48.3 -69.4 74.4 74.0 52.5 66.9
2.6 3.8 1.0 1.5 2.6 1.3 2.3 5.1 2.7

Fr(luncY 450 9SB 30SB 900 9SB 30SB 1350 9SB 30SB

Baseline 1 17.4 -45.5 -40.2 18.1 -39.6 -37.4 -19.1 -34.1 -32.8
4.1 3.4 3.0 1.9 2.9 2.0 3.2 2.9 1.5

Baseline 2 16.3 33.4 41.0 17.1 32.3 39.9 25.4 30.4 34.0
1.2 1.2 1.2 1.6 1.4 1.6 1.9 1.8 1.0

CmSltpum 8.5 9.7 10.9 10.9Av 33.3 33.3Av III

Baseline 1 -6.4 -7.7 -3.7 -5.4 -4.4 -4.4 -6.7
0.6 1.0 0.6 0.7 0.9 0.7 1.0

Baseline 2 -5.3 -7.7 -6.0 -7.8 -7.6 -7.8 -10.9
0.3 0.5 0.6 0.4 0.5 0.4 1.4

parallel to the top land of the gear tooth. The second test

involved a deep cut parallel to the tooth base, resulting in

almost complete removal of the tooth. In this case there was

essentially no contact between the tooth and the driven gear.

The third test involved the placement of gouges on the upper

surface of two of the teeth with a depth of 1/32 inch and a

width of up to 1/16 inch. These tests are identified for

future reference as Gear Tests 1-1, 1-2, and 1-3,

respectively. Gear Tests 1-1 and 1-3 were considered to

involve "moderate" wear while Gear Test 1-2 was considered to

involve "severe" wear. A schematic illustration of these

damage levels is presented in Figure 23.
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j Gear Test

[ ]Gear Test
-2I

D Gear Test
1-3

15 Tooth Gear

Figure 23 15 Tooth Pinion Damage Levels for Gear Tests 1-1

through 1-3

Following these tests, a more thorough set of six

tests were conducted on the 15 tooth pinion. In these tests

the damage was more progressive in nature. In the first test,

Gear Test 1-4, a single pass was made over the engaging face

of the affected tooth with a coarse machine file. Even after

the 45 minute stabilization time there was a significant

change in the vibration signature. However, there was no

observable increase in the audible noise level from that

encountered in the baseline tests. When the test
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was completed, the file marks from the two passes had been

removed by the wearing in phenomenon common to gears.

In the following test, Gear Test 1-5, additional

material was removed from the face of the engaging face of the

gear tooth but not yet biting into the top land. In this case,

there was an additional clicking noise audible. Again,

following the four hour testing period, the file marks had

been removed except in an area on a corner where the filing

had been uneven. Gear Tests 1-4 and 1-5 were evaluated as

having "slight" damage.

Gear Tests 1-6 and 1-7 involved "moderate" damage

to the tooth. In Gear Test 1-6, the contact surface of the

engaged face was filed down until the involute shape of the

tooth was clearly affected but not to the point that the top

land was affected. When this test was conducted a

significantly stronger clicking noise was heard. Again, no

etch marks were observed following the test. Gear Test 1-7

involved deepening the region removed in the previous test

until the top land was clearly affected. No additional noise

during the test was noted.

Gear Tests 1-8 and 1-9 involved "severe" damage to

the tooth. In Test 1-8, the removed region was deepened so

that almost 1/3 of the tooth was missing. In Test 1-9

approximately 1/2 of the tooth was removed. The overall noise

level during these tests increased somewhat over that

encountered during the previous two tests but there was no
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discernible difference between these two tests. Figure 24

depicts the damage levels for Gear Tests 1-4 through 1-9.

E Gear Test1-4

jGear Test.,.:: !-5

.,. IZ. Gear Test
.. -,-o L..... 1-7E-] Gear Test

• ..- Gear Test
". -l 1-8

1-9

15 Tooth Gear

Figure 24 Gear Damage Levels for Gear Tests 1-4 through 1-9

b. Presentation and Discussion of Test Data

In general the damage to the 15 tooth pinion

manifested itself through an overall reduction in gear mesh

frequency amplitudes and increases in the 30 Hz sidebands.

Additionally, as damage became severe, overall vibration

levels increased throughout the frequency spectrum, being

principally noted in the drive shaft rotative frequency and

its harmonics. While all of these characteristics were
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expected, there were several instances where sideband growth

was lower in cases with a higher degree of damage than in

cases involving lesser degrees of damage. This phenomenon can

be partly explained by considering that the degree of contact

between the damaged tooth and the mating gear tended to be

considerably reduced as more material was removed thereby

reducing the degree of impact. In the most extreme case, the

damaged tooth may not have actually made contact at all, with

the vibration increases experienced stemming from the

misalignment experienced by the following tooth as it meshed

with the mating gear.

Figure 26 illustrates a portion of a time signature

from Gear Test 1-2. The 33 ms pulse stemming from the damaged

tooth impacting as it goes through the gear mesh is

predominant. Observation of the frequency spectrum in Figures

25 and 28 also reveals the strong influence of the 30 Hz

sidebands throughout the spectrum but in particular about the

gear mesh frequencies. Figure 27 presents the broad band

Cepstrum. Here the predominant 33.3 ms quefrency and its

rahmonics are clearly visible.

A summary of the means and standard deviations of

thc decibel levels extracted from the light damage level tests

is provided in Table V along with the baseline values. A

quick perusal of this data reveals that the most prominent

deviations from the baseline occurred at 92, 450, 900, and

1350 Hz as well as at the 33.3 ms and ill ms quefrencies.
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FILT LIN Si 0Ovlp Hann
0.0

dB

rms

-100

0 Hz GEARI TEST2 EXT RUN 312.5

X-300 Hz
Y--67.273 dBVrmB
FILT LIN S1 OOvl p Hsnn

dB

-100

300 Hz GEAR1 TEST2 EXT RUN 612.5

Figure 25 Frequency Spectrum for Gear Test 1-2 0-612 Hz

Additionally significant changes can be noted in the 30 Hz

sidebands associated with the 900 and 1350 Hz gear mesh

frequencies. Whereas the 30 Hz sidebands experienced

significant growth, the gear mesh frequencies increased in

magnitude on one occasion and decreased at the remaining

frequencies that changed. Additionally there was an increase

in the magnitude of the cepstrum at 33.3 ms and its rahmonics

which was balanced by a drop in the magnitude at the 111 ms

quefrency as well as at the bulk of the remaining cepstral

quefrencies monitored.
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Table V. Mean and Standard Deviations of dB Levels in Gear 1
Low Severity Fault Tests

Frqu)ency 9.0 18.0 30.0 60.0 92.0 103 118 184 236

Basel ine
-61.2 -64.6 -57.6 -53.7 -55.0 -74.4 -70.8 -41.2 -64.4

Gear Test 60.9 65.8 -56.6 -51.4 -69.5 " 74.2 7f-3 "43.6" -70.4
1-4 1.9 2.4 1.9 0.9 2.1 0.9 1.1 1.9 0.7

Gear Test -61. 64.7 -56.5 51.4 68.1' -73.5 69.6 -44. 65.0
1-5 2.5 2.3 2.9 1.8 2.3 1.5 3.2 2.6 2.1

FrfgztTency 450 9SB 30SB 900 9SB 3OSB 1350 9SB 30SB

Basel ine
17.4 -45.5 -40.2 -18.1 -39.6 -37.4 -19.1 -34.1 -32.8

Gear Test 17.6' 42.9 -41.9 15.9 -37.0 -31.4 -33 -35.8 -29.0
1-4 2.1 2.3 1.4 1.5 1.6 1.4 2.9 3.0 2.6

Gear Test -21.5 -45.6 -40.1 -14.8 -38.5 -27.3 -15.9 -33.6 -27.4
i-5 1.5 2.6 1.7 0.5 1.2 1.7 0.8 1.2 1.0

Cepstrun-
(ns) 8.5 9.7 10.9 10.9Av 33.3 33.3Av III I outlier

Basel ine - removed in
-6.4 -7.7 -3.7 -5.4 -4.4 -4.4 -6.7 computation

Gear Test -7.9 -6.2 -6.0 -6 -3.3 -4.0- 13.fsandard
1-4 0.8 0.5 0.5 0. 0.7 0.3 1.3 deviation and

Gear Test -6.2 -7.0 1-6.9 -. 4 1 -2.3 -3.1 -12.1 ean.

1-5 0.8 0.9 0.6 1.0 0.6 0.4 0.7

This phenomenon of an increase in the dB level in

one region of the spectrum accompanied by a decrease in other

regions, is often observed in the data presented, especially

in cases of low to moderate damage to a component. However,

this phenomenon is even more noticeable in the cepstrum. Since

the vibration signature of a machine is analogous to an energy

distribution, it should be expected that the overall spectrum
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Fiqure 26 Time Signature for Gear Test 1-2; 5ms,5V per
Division

X-120. OmSec
Ya-4 . 83384mV2
A: CEPSTM _5Avg OOv _

1.0

Real

V2

0.0 LtA.AAI~&u
FxdXY 0.0 Sec GEARI TEST2 EXT RUN 120m

Figure 27 Cepstrum for Gear Test 1-2

possesses a finite amount of energy. Consequently an increase

in energy at one frequency or family of frequencies should be

expected to be accompanied by a decrease somewhere else.

Furthermore, the location in the frequency spectrum where the

energy level drops can be as significant for diagnostics

purposes as the location where the energy rises. As additional

empirical data is presented, it should be possible to identify

the frequencies where this is the case.
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X-750 Hz
Y--24.527 dBVrms
FILT LIN S1 0 Ovlp Hann

1-0

dB . ...

rms
V

-90.0

750 Hz GEARI TEST2 EXT RUN 1.0625k

X-1 .35156kHz
Ya--19.094 dBVrms
FILT LIN SI OOvlp Hann

-16 .0

dB

V

-80 .0

1.2k Hz GEARI TEST2 EXT RUN 1.5125k

Figure 28 Frequency Spectrum for Gear Test 1-2 750-1512 Hz

Table VI presents the means and standard deviations

for the dB levels encountered in the tests involving moderate

damage to Gear 1. Upon observation of these results the

following changes to the vibration signature are noted. The

most prominent region of amplitude growth is consistently

within the 30 Hz sidebands and the 33.3 ms quefrency

associated with the 30 Hz sidebands. Additionally the 30 Hz

shaft rotative frequencies experience a slight increase in

excitation. The magnitude of the signals at the gear mesh

frequencies alternately increase and decrease from test to

test as do a number of the bearing frequencies. Since the
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gear mesh frequencies have a direct connection to the

diagnosis of gear faults, which are the faults being studied,

it would appear that both positive and negative deviation of

these dB values from the baseline are significant.

Gear Tests 1-2, 1-8, and 1-9 involved severe gear

tooth damage and a summary of the data obtained from these

tests is provided in Table VII. Gear Tests 1-2 and 1-8 reflect

a continuation of the trend established in lower severity

fault tests. However in Gear Test 1-2, there is an increase in

vibration level at the shaft rotative frequencies and a number

of the bearing frequencies in addition to the 30 Hz sideband

and quefrency increases. This infers an overall increase in

system energy which would appear to be characteristic to high

severity faults. It is expected that at this point broad band

vibration indicators sensing peak or RMS levels would register

a significant fault.

Gear Test 1-9 had to be curtailed after only an

incomplete set of readings had been taken due to a

catastrophic failure. In this failure, the set screw affixing

the 15 tooth pinion (Gear 1) worked itself loose and then

moved down the shaft, ultimately binding with the 50 tooth

gear (Gear 2) on one side. Damage to Gear 1 involved severe

deformation of all teeth along at least 50% of the contact

length of the gear. Damage to Gear 2 was considerably more

mild, involving lesser deformations along the edge of the

tooth, extending in the worst case to 25% of the contact
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Table VI. dB Level Mean and Standard Deviations for Gear 1
Moderate Severity Fault Tests

Fr f ZTnCy 9.0 18.0 30.0 60.0 92.0 103 118 184 236

Baseline -61.2 -64.6 -57.6 -52.7 -55..0 -74.4 -70.8 -41.2 -64.4

Gear Test 63.7 -63.6 -53.6 -50.2 -49.9 r70.9 -70.0 38.7 59.6
!-I .l 6 9 'A )1 r; Ad

Gear Test -59.6 -65.5" -57.1 -51.5 -63.9 -72.9 -72.7 -39.8 68.4
l-q 39 22 'A 1 1 4 1 io ) I 'A

Gear Test -60.1 62.1 -55.8 -53.9 -62.9 -73.6 -70.8 -57.3 -68.3
i-6 I 4 LL Q& ifL] 9'0 99 9 94

Gear Test -61.5 64.5 -56.1 -52.0 60.3 74.7 66.0 -56.6" -68.1
1-7 "97 ! 1 229 !5 I A q in IR

Fre uency(9z) 450 9SB 30SB 900 9SB 30SB 1350 9SB 30SB

Baseline -17.4 -45.5 -40.2 -18.1 -39.6 -37.4 -19.1 -34.1 -32.8

Gear Test -13.2 -44.4 " -28.7 -23.4 -39.9 -29.1 -18.3 -34.9 24.41-1 n 7 I 5 !A 1 11 q A 9 19 1 Q
Gear Test -14.4 39.6 40.6 -16.7 -35.6 -32.0 -16.1 -28.8 26.5
W- -5 1A Z7 16 QL7 1 4 1 14 WGear Test 21.4 41.9 40.9 18.6 34.4' -32.1 -22.7 -31.7 -29.7
]-Ai 14 n' R970 7 ;' q 9 9_

Gear Test 26.4 46.7 40.9 16.3 34.2 28.8 19.1 31.3 28.0
!-7 14 1 1R IW I !n

Cepstrum
(Ms) 8.5 9.7 10.9 10.9Av 33.3 33.3Av III

Baseline -6.4 -7.7 -3.7 -5.4 -4.4 -4.4 -6.7

Gear Test -6.7 -8.0 -6.4 -6.0 -2.3 -1.9 -12.1
W- - 1 n 0. 5 QA OR 0L ' i

Gear Test -9.3 -6.1 -5.1 -5.5 -4.4" -3.9 -7.0
1-' 14 In 05 07 QR (a oL

Gear Test -6.9 -6.2 -7.2 -6.8 -5.2 -5.5 -12.0
i -A07 Il W7 () Q7 04 09

Gear Test -4.6 -65 -7.9 -6.9 -2.7 -3.6 -14.4
1-7 .- nL 07 - D4. n.O JL if

length. The damage to Gear I was classified severe, while the

damage to Gear 2 was classified as moderate. The readings in

Gear Test 1-9 were taken immediately prior to the casualty.
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Here there is a massive increase in energy level throughout

the spectrum, indicating a very severe fault was in progress.

Following this casualty, once all other components

had been inspected for damage, a test was conducted with both

damaged gears in place. The results from this test are

summarized in Table VII. Here significant increases in

vibration amplitude throughout the spectrum, including the 9.0

Hz sidebands, which had remained inactive until Gear Test 1-9.

The only frequency components that dropped was the gear mesh

frequencies, which dropped to levels never descended to

before. Nevertheless, the highest increase in dB level

occurred in the 9.0 Hz sidebands, revealing their higher level

of damage. Oddly, Cepstral readings experienced an overall

decrease in magnitude and apparently did not register the

fault.

3. Faults to the Driven Gear

The set of tests involving the 50 tooth gear (Gear2)

consisted of a total of four tests. In the first test, the 50

tooth gear that was subject to the casualty described in the

previous section was operated with an intact drive pinion.

This test was designated Gear Test 2-1 and the gear was

considered to have suffered moderate damage. The next test

involved a separate gear that had one tooth that had most of

its material removed except immediately about its base. This

test was designated Gear Test 2-2 and was considered to
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Table VII. dB Level Mean and Standard Deviations for Test
Involving Severe Damage to Gear 1 and Moderate Damage to Gear
2

t-7) in I nf An _ qn im IIR IRd 916

Baseline -61.2 -64.6 -57.6 -52.7 -55.0 -74.4 -70.8 -41.2 -64.4

Gear Test -58.0 -58.2 -. 5 * 7 -40.4 -62.3
1-2 2.1 2.8 2.1 4.5 4.8 2,9 2.9 3.4 2.6

Gear Test -60.4 65.3 -54.7 -52.0 -55.7 -74.5 -67.6 -51.4" 68.8"
1-8 2.3 2.7 1.3 1.7 1.2 1.3 3.0 3.6 2.7

Gear Test -44.2 50.2 -33.8 -36.2 -47.6 -69.4 -44.7 -42.5 36.6

Gear Test -57.9 -60.2" -50.6" -43.4" -44.8 -72.1 -60.7 -36.9 57.5
-I10 2.9 2.4 4.1 2.7 3.5 1.2 2.4 1.9 3.7

Fre uency' -4 r nSEL
(I-71 d~l qIR q1-g qnnl g I I - q j n q

Baseline -17.4 -45.5 40.2 -18.1 -39.6 -37.4 -19.1 -34.1 -32.8

Gear Test -17.4 -45.2 -23.0 13.1 -37.3 -26.4 -19.1 -34.5 -26.6
1-2 2.4 1.6 2.1 0.9 1.8 1.3 0.7 0.9 2.6

Gear Test -26.6 -46.7 36.9 16.9 -35.7 -30.2 -22.7 -34.7 -29.9
1-8 3.3 1.0 2.1 0.6 1.4 1.4 1.3 1.5 0.7

Gear Test 17.4 35.1 28.9 17.4 33.7 28.3

Gear Test 18.8 [ 38.5 32.1 25.6 * -38.1* 29.2 -26.4 -31.4 -31.0
1-10 1.7 2.2 1.5 2.9 1.8 2.5 2.8 1.9 1.2

Cepstrum -I outlier
(MQ A S qq in.3. U1. j 1 1. 3AV III removed during

Baseline -6.4 -7.7 -3.7 -5.4 -4.4 -4.4 -6.7 computation of

Gear Test -5.9 -7.5 -8.2 -6.3 -2.4 -2.4 -12.3 mean and
1-2 0.4 0.6 1.1 0.5 0.6 0.3 0.9 standadrd

Gear Test -7.6 -7.1 -7.3 -6.3 -2.3 -3.2 -12.5 deviation.
1-8 0.5 0.4 0.8 0.4 0.2 0.2 0.8 (-) incomplete

Gear Test (-) (-) (-) (-) (-) (-) (-) data due toI -14 interruption by
Gear Test -7.4 -7.3 -7.7 -7.4 -4.7 -4.6 -13.2 itrutib

1-0 1.0 0.3 05 0.4 0.8 0.7 1.4 casualty.

involve severe damage. Gear Test 2-3 was conducted with a

previously undamaged gear where the engaged face of a gear

tooth was filed down until the involute shape was Just barely

affected. This level of damage, while considered of low
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severity, produced an audible clicking sound which was also

heard in the previous two tests involving Gear 2 damage. The

last test of the series, Gear Test 2-4 involved expanding the

damage imposed in Gear Test 2-3, removing the face and upper

land on the engaged side but not affecting that of the

disengaged face. The level of damage imposed was regarded as

moderate. A schematic of the damage imposed in these tests is

provided in Figure 29.

1 Gear Test

2-j

j Gear Test

- EliGear Test

2-3

50 Tooth Gear

Figure 29 Damage imposed on Gear 2

Representative frequency spectra and broad band

cepstral plots are provided in Figures 30 through 32. In these

plots the 9.0 Hz sidebands and ill ms cepstrum predominate as
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is expected from the nature of the faults. Additionally the

representative time domain plot in Figure 33 reveals sharp

impacts occurring at a period of 110 ins, also corresponding to

the Gear 2 rotative frequency.

X- 117. 19 Hz
Ya--65.396 d6Vrms
FILT LIN SI ____l __ 0~DpHann _____

0.0

dB 11_ __ _ _ -- __ _ __

rms
V

-100

0 Hz GEAR2-4 312.5

X-300 Hz
Ya--61.165 dBVrms

dB

r Ma
V

-100

Figure 30 Linear Spectrum for Gear Fault 2-4; 0-612 Hz

Table VIII provides a summary of the dB levels

experienced for the frequencies and guefrencies monitored.

A brief inspection of the data will reveal the following

trends. Observation of the averaged sidebands for the machine

clearly indicates a fault in Gear 2 even in the case

of low severity damage. The fault appears to become evident

115



i I i . I I -4

Figure 31 Time Domain Response for Gear Test 2-4; 5V/5ms per
Division

X-750 Hz
Ye--42.551 dBVrms

dB

V

-90.0

750 Hz GEAR2-41.5k

FILTLIN SI _____ %OVIP Hann _____
-15 .0

V

1.2k Hz GEAR2-41 1.5125kZ

Figure 32 Linear Spectrum for Gear Fault 2-4; 750-1512 Hz

f irst in the sidebands about the 450 and 900 Hz gear mesh

fr; '.,iencies. The sidebands about 1350 Hz appear to undergo a
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Figure 33 Broad Band Cepstrum for Gear 2-4 Fault

lesser degree of excitation which actually declines in the

highest severity faults.

Gear mesh frequencies again predominantly experience

dB drops in all but the most severe cases. Surprisingly, in

all but the most severe cases, the 9.0 Hz shaft frequencies

remained relatively unaffected in all but the highest level of

damage, even though they would appear to be most directly

coupled to the damaged gear. Conversely, in all cases the 30

Hz shaft frequencies, which appear to be relatively remote

from the damage, underwent large dB rises.

In moderate and high severity faults both the bearing

inner race frequencies and their related quefrencies

experienced some increase in vibrational amplitude. However,

with the possible exception of the sidebands, the most bold

indication of gear damage consistently was the I1 ms

cepstrum.
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Table VIII. Mean and Standard Deviations for dB levels for
Gear 2 Fault Tests

F1-W 9.0 18.0 30.0 60.0 92.0 103 118 184 236

Baseline 1 -61.2 -64.6 -57.6 -52.7 -55.0 -74.4 -70.8 -41.2 -64.4

GeaT Test 63.1 -64.8 62.6 49.2 -57.7* -74.3 70.9 " -43.5' -68.4 *
-1 2) L AL 1 I) 1 1 i n A I

Gear Test -53.7" -55.6" -57.6" -48.3 -53.6" -74.8 -54.2 a -46.6" -59.9"
9-? 35 d 16 3 R Sl 4 1 1 L S 2LI

Baseline 2 61.8 -63.9 -67.2 -48.3 -69.4 -74.4 -74.0 -52.5 -66.9

GeaT Test -62.6 66.3 63.0 46.7 62.4 72.1 68.6 48.5 65.3"2-3 .2, 92L 18 fL 93 Jl 56 1J8 LL
Gear Test -62.5 65.6 65.3 45.2 61.5 74.0 70.0" -48.9 [68.0"- -A A " n, A R A "4 ?, R i'

FreluencY 450 9SB 30SB 900 9SB 30SB 1350 9SB 30SB

Baseline 1 17.4 -45.5 -40.2 18.1 -39.6 -37.4 19.1 -34.1 -32.8

Gear Test -20.6 -40.5 -38.7 -23.1 -37.9 -38.6 -23.4 * -32.6 -37.8
I- ILL 197 9 2Q ) 2) 1L7 12 79 9 22

Gear Test -22.5" -37.5 -39.8 -21.6 -34.8 -43.5 22.4 34.0 36.2
22~~ 2 [3.~f. 2 2 2 24 -36.

Baseline 2 16.3 -33.4 -41.0 17.1 -32.3 -39.9 -25.4 -30.4 -34.0

r ]est "23.1 -41.9 50.0 -23.0 -31.8 -38.7 -24.5 -30.1 -37.0Y-3 IN I N fin 1 1 A 1? 9 7 n R -i1

Gear Test 23.5 -36.4 50.0 26.3 -30.7 -38.3 -27.3 -24.8 34.0
2-4 1 n QNR 1 1 _LJ I 3L n3 IA I C !

Cepstrum * One outlier
(ms) 8.5 9.7 10.9 10.9Av 33.3 33.3Av III removed for

Baseline 1 -6.4 -7.7 -3.7 -5.4 -4.4 -4.4 -6.7 computation of

Gear Test -5.0 -6.6 -5.1 -6.5 -6.5 -5.8 5 mean and
1- 1 n q i n n A n 3 n A n S I A standard deviation

Gear Test -6.0 -7.9 -6.6 -8.3 -8.0 -8.3 -3.0
9nS _ ni nA n L n S n'7

Baseline 2 -5.3 -7.7 -6.0 -7.8 -7.6 -7.8 -10.9

Geat Test -7.5 -6.8 -7.4 -8.2 -7.8 -8.9 -7.0
)- 0 'A Q 4 nR n& I n E n

Gear Test -7.7 -7.7 -6.5 -8.4 -8.3 -8.2 -5.3

9I J IA f I n'

4. Bearing Faults

Acquisition of bearing fault data was rather difficult

to accomplish. The small size of the bearings limited the
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degree of control on the severity and location of damage that

could be imposed. Additionally, the bearings were very lightly

loaded and, compared with the gear related signals, the

bearing signals were barely recognizable from the ambient

noise. Finally, a computational error was made which rendered

two tests involving the low speed shaft bearings useless.

Thus, the only data presented and utilized in the moderate

complexity neural networks involves a high speed shaft bearing

whose operation became increasingly rough due to a lack of

lubrication. To make matters worse, these tests were conducted

immediately after the wear-in period of both Gears 1 and 2

following the casualty experienced during Gear Test 1-9. As a

result there was a high degree of gear noise from both gears.

On the other hand these tests appeared to be good

examples of multiple component faults on which conventional

rule based expert systems perform questionably and thereby

were retained. Because of the continued wearing in of the new

gears, Gear 1 was determined to have a "moderate" severity

damage equivalent while Gear 2 was determined to posses a low

severity damage equivalent. The poorly lubricated bearing was

determined to posses a low severity damage level due to its

size and loaeing. A summary of the results from these tests is

provided in Table IX.

Investigation of this data immediately indicates that

the prominent signal stems from the gears wearing in. However,

there are significant increases in vibration magnitudes at 92
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Table IX. dB Level Mean and Standard Deviation for Tests

Involving Bearing Faults

T )AnCY 90 180 30.0 60.0 92.0 103 118 184 236

Baseline 2 -61.8 -63.9 -67.2 -48.3 -69.4 -74.4 -74.0 -52.5 -66.9

Beang 62.0 -65.9 -64.8 -49.0 -60.7" -67.6 -738 -51.4 -60.8 °

I-I 2.3 2.2 1.3 1.0 1.6 0.3 1.1 3.4 2.6

Be - 2.4 -65.5 -65.2 -48.8 -63.8 70.1 -74.2 [55.2 58.4
-2 3.9 3.6 1.4 0.5 1.8 43 19 2.6 0.7

'r ' 450 9SB 30S1H 900 9SB 30S01 1350 9SB 30SB

Basdine 2 .16.3 -33.2 -41.0 17.1 -32.3 -39.9 -25.4 -30.4 -34.0

Bearing 7.3 7 -1.4 , 7-21.9 -37.4 - 7.' - 19.9 -33.9 -36.0
i-I 1.9 12.2 3.0 1.9 2.4 3.4 3.6 4.1 4.0

Beanig 7.3 -05 -35.7 15.6 -312 -312 18.2 [251 29.3
1-2 .1 0.4 0.7 0.6 1.4 1 0.5 0.0 1.6

Cepstrwm
(ins) 8.5 9.7 10.9 10.9A 33.3 33.3Av III

Baselhn e 2 -5.3 7.7 -60 -78 -7.6 -7.8 -10.9

Bearnlg -5.5 -8.0 -5.4 -6.1 -4.8 -5.5 -8.1
1-1 0.7 0.2 .0 0.6 1.1 0.8 0.8

Bearling -6.3 -80 -4.5 -6.3 -4.9 -5.8 -10.6
1-2 1.2 0.4 0.6 0.0 0.8 0.1 1.1

Hz, and 236 Hz, as well as in the 10.9 and 9.7 ms quefrencies.

These correspond to the bearing inner and outer races as well

as the balls themselves.

5. Shaft Faults

Shaft faults were imposed by two methods. In the

first, a shaft imbalance was imposed by allowing the high

speed shaft to operate unsupported by the remote bearing with

respect to the motor coupling. This test, designated Shaft

Test 1-1, while producing relatively low vibration levels,

generated a highly visible imbalance and was therefore

assigned a damage severity of "moderate". The second type of
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shaft fault imposed involved replacing the slow speed shaft

with one that was "slightly" bent. This misalignment

generated both a highly visible wobble in the shaft and

produced very strong vibrational signals. Two of these tests

were conducted; one involved the use of a 15 tooth pinion

whose teeth had suffered an excessive degree of generalized

wear and was in need of replacement. The second test used a

replacement gear that was in good condition. Accordingly, the

first of these tests was assigned a low severity level for the

gear, a high severity level for the 9.0 Hz shaft, and was

designated Shaft Test 2-1. Similarly, the second test involved

a damage severity rating of "severe" for the shaft, "normal"

for the gear, and was designated Shaft Test 2-2.

Representative plots of the linear frequency spectrum

and cepstrum are provided for Shaft Test 2-2 in Figures 34

through 36. The strong signal generated by the shaft is

clearly visible in the 0-312 Hz frequency plot as are strong

9.0 Hz sidebands generated as Gear 2 alternately loads and

unloads each shaft rotation. Additionally, a time domain plot

illustrating the pulses generated by the bent shaft is

provided in Figure 37.

A summary of test results is provided in Table X. A

brief investigation of this data reveals the following. In

Test Shaft 1-1, there was relatively little deviation from the

baseline. There was a significant increase in the shaft

rotative frequency and alternately increasing and decreasing
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Figure 34 Broad Band Cepstrum for Shaft Test 2-2
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Figure 35 Linear Spectrum for Shaft Test 2-2; 0-612 H-z

dB levels at the gear mesh frequencies. There was a slight

increase in the 30 Hz sidebands about 900 Hz and a significant
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Figure 36 Linear Spectrum for Shaft Test 2-2; 750-1512 Hz

increase in the 33.3 ms cepstrum and the average of its

rahmonics. The changes to the gear mesh frequency , sidebands,

and cepstrum can be attributed to the 15 tooth pinion

alternately loading and unloading as the shaft is allowed to

deflect; The 30 Hz dB increase relates directly to the shaft

imbalance.

Shaft Tests 2-1 and 2-2 varied considerably from Shaft

Test 1-1. Both the shaft rotative frequency and even more

noticeably its first harmonic have strong increases in

magnitude. However, there are massive drops in dB at the gear
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Figure 37 Time Domain Plot for Shaft 2-2 2V,20ms per Division

mesh frequencies and noticeable gains at the 9.0 Hz sidebands

in both tests. While there are no significant gains in the

cepstrum for the quefrencies monitored, there was a

significant gain at 222 as, a rahmonic of the 9.0 Hz family of

frequencies. While the 9.0 Hz sideband growth in

Shaft Test 2-1 can be explained in part by the gear damage,

the only explanation for this in Shaft Test 2-2 is the

sinusoidal loading and unloading of the gear as the bent shaft

rotates. Further, the dB levels in Shaft Test 2-2 are by and
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Table X. Summary of Mean and Standard D-viations for Tests

Involving Shaft Faults

Fret uenv:y(.j 9.0 18.0 30.0 60.0 92.0 103 118 184 236

Baseline 2 -61.8 -63.9 -67.2 -48.3 -69.4 -74.4 -74.0 -52.5 -66.9

Shaft Test 59.5 -63.9 -65.0 -47.1 -69.8 -74.5 -72.7 T3.8 7
1-I 1.8 2.3 1.6 1.5 2.7 1.2 1.7 2.9 1.6

Shaft Test 55.) -51.4 -64.3 -50.1 -69.2 -71.7 -72.6 68.3 -69.5
2-1 2. 1 1.9 1.9 1.9 3.3 1.3 1.4 1.8 2.5

Shaft Test 51.9 -42.6 -64.8" -49.6 -65.8 -73.8 -72.3 567 1
2-2 2.3 0.7 2.3 1.2 2.6 1.8 1.7 1.8 2.4

FT ~uency(l) 450 9SB 30S1 900 9SB 30SB 1350 9SB 30SB

Baseline 2
16.3 -33.4 -41.0 -17.1 -32.3 -39.9 25.4 -30.4 -34.0

ShaF T Test -21.3 -38.3 r44.4 -16.1 r34.5 -36.7 -17.9" 25.2 -31.4
I-I 1.8 2.1 1.8 0.8 0.7 0.9 2.5 1.4 1.6

Shaft Test -12.5 -25.4 -40.0 -30.6 -28.4 -43.7 -20.2 -29.0 -35.5
2-I 1.2 1.5 1.0 3.9 1.0 2.0 2.5 2.0 1.1

Shaft Test -20.7 -24.A -43.3 29.8 -35.6 -44.4 25.4 25.5 -39.6
2-2 1.9 0.4 1.1 1.9 1.2 1.3 2.6 2.4 1.6

Cepstrun * One outlier
("1%) 8.5 9.7 10.9 10.9Av 33.3 33.3A' III rtnoved fron

Baseline 2 data set during
-5.3 -7.7 -6.0 -7.8 -7.6 -7.8 -10.9 computation of

Shaft lest -5.7' -7.F -7.1 -7.8 -6.0 -6.U an and
I-1 0.6 I. I 0.4 ).4 0.4 0.3 0.5 standard dcvlation.

Shaft l est -5.2 -7.4 -8.0 -87 -84 -8.2 -13.0
2-I 0.3 0.6 0.5 0.5 0.5 0.3 0.4

Shaft lest -5.2 -6.0 -5.2 -82 -8.7 -8.6 -2.9
2-2 U.5 1.0 0.4 10.6 0.5 0.3 0.9

large greater than in Shaft Test 2-1, which runs counter to

the conventional wisdom where higher damage levels yield

higher magnitude vibration signals.

6. Suiuary of General Trends

In general, the following trends were observed as a

result of the tests conducted on the physical model. First,
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the faults imposed in most cases generated the type of

vibration signatures that one would be led to expect from the

elementary machinery condition monitoring and diagnostics

practices discussed in Chapter III. However, there was a great

deal more coupling between the various components than one may

have expected, especially in cases involving the more severe

damage levels. For example, in the case of the shaft faults to

the low speed shaft, the vibration levels associated with the

drive gear were considerably greater than those associated

with the shaft itself. This could be accounted for by

consideration of the small size of the model on which the

tests were performed. Because of the small size of the model

and light radial loads, bearing faults were particularly

difficult to impose and detect. Nevertheless, analysis of the

frequency spectrum and cepstrum did reveal bearing fault

conditions to a limited degree in spite of the physical

shortcomings of the model. Although at most frequencies

monitored, dB decreases appear to have little relevance to the

location of machinery faults, they do appear to be very

significant in the case of gear mesh frequencies, where they

tended to isolate the location of the fault to one of the two

meshing gears. This observation would prove to be a key factor

in the preprocessing of the vibration data prior to input into

the ncural r-tworks.
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VI. DIAGNOSTIC SYSTEM PROTOTYPE: THE NEURAL NETWORK

The neural network system designed to provide machinery

diagnostics for the uncomplicated machinery described in the

previous chapter was essentially an expansio. if the simple

diagnostics model described in Chapter IV. As there was still

some question as to the relative effectiveness of the various

frequencies and quefrencies monitored, particularly with

respect to the isolation of gear faults by either sideband

averaging or cepstral analysis, it was determined to develop

two diagnostics neural networks; one utilizing sideband

averaging about the first three gear mesh frequencies and the

other utilizing cepstral inputs to supplement both gear mesh

and bearing frequencies in the determination of gear and

bearing faults. Additionally, both networks would receive

shaft frequency inputs to aid in the diagnostics of shaft

related faults.

All neural networks described in this section were created

and trained on an IBM 386 personal computer utilizing

Neuralware Inc.'s Neuralworks Professional II software

simulator. Training sessions were limited to no more than one

day run time, over which period a number in the order of

300,000 training presentations would occur.
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Each of these networks were initially trained utilizing

artificially generated data. This data was generated in the

same manner as that of Chapter IV, but featured a different dB

range to severity level correlation for each monitored

parameter based on the statistics from the empirical baseline

experiments. Then the networks were trained afresh using a

portion of the data extracted from the tests described in the

previous chapter. Finally, the networks trained on

artificially generated data were first tested on a separate

set of artificially generated data, whereas all networks under

investigation were tested on a separate empirically based data

set. As significant flaws were discovered in the performance

of both basic networks when presented empirical data, a third

diagnostic system utilizing both cepstral and sideband

information was also investigated.

In this chapter the three rotative machinery diagnostics

neural networks developed will be described. First, the

general system architecture will be discussed, followed by a

description of each network's inputs. Following this, the

nature of the training sets and the preprocessing required

will be described. Third, the results of the various tests and

an evaluation of each network's performance will be

presented. Finally, an evaluation of the relative

effectiveness of the network inputs in each of the networks

will be made.
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A. SYSTEM ARCHITECTURE

Determining an effective system architecture is as

important in solving practical engineering problems as is

selecting a set of inputs to the network that adequately

describes the decision space. Because this aspect of the

problem is so important, a brief description of a preliminary

architecture that was discarded in this particular application

is as instructive as a description of the architecture

eventually decided upon.

1. Preliminary Network Architecture

Originally the system architecture under consideration

was patterned after the architecture utilized by Dietz,

Kiech, and Ali[Ref.7] in their backpropagation diagnostics

model for determining the location and severity of jet engine

system faults. In this architecture, two levels of neural

networks were used. The lower level determined the location of

the fault and provided an input to the upper level network

which noted the time duration of the fault signals to

determine the severity of the fault. This two stage

diagnostics system architecture was also used successfully by

Watanabe and Himmelblau[Ref.l] in the detection of incipient

faults in chemical processes.

The system architecture under consideration involved

employing a series of pretrained severity indicating

backpropagation modules similar to the simple diagnostics
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model described in Chapter IV to provide a severity level

ranging from 0.0 to 1.0 from each of the monitored parameters

to an upper level neural network. As in the simple diagnostics

model, these lower level networks were trained to classify a

series of dB differences into "no", "low", "moderate" and

"severe" fault conditions. The upper level network received

these severity level inputs and identified the location of the

fault by means of a binary output corresponding with each

machinery component under scrutiny; "0" indicating no fault

and "1" indicating a fault condition at that location. A

schematic of this arrangement is provided in Figure 38.

A preliminary upper level network consisting of 18

inputs, 27 hidden, and 5 output PE's was successfully trained

and tested. Additionally, as empirical data became available,

the lower level networks were trained to provide severity

indications for inputs that had severity criteria that

departed from the uniform severity criteria established in

Chapter IV. However, several lower level networks appeared to

converge to a minimum level of RMS error but, when tested were

found to produce grossly erroneous outputs. A probable cause

of this anomaly was that the data set contained a large amount

of zeros in both is input and desired output and the learning

algorithm in place was a normalized cumulative delta rule

which calculated RMS error over the entire epoch and averaged

it. Because of the large number of low magnitude errors

averaged with the large magnitude errors, the RMS error was
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Figure 38 Proposed Two Level Machinery Diagnostic Network

misleadingly suppressed. Ultimately the cause of the gross

errors themsplves was attributed to inadvertently passing the

input vectors through a linear mapping routine provided in the

Neuralworks Professional II software simulator called a

"MinMax Table". Essentially, this routine provided the

network, which was tasked to provide a non-linear mapping of

the inputs to values from 0.0 to 1.0 with an input already

linearly mapped from 0.0 to 1.0, thereby making it very

difficult to adjust weights effectively. By the time this

cause was identified, however, an alternative architecture had

been discovered and implemented with some degree of success.
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Ironically this architecture featured a capitalization of that

which proved to be the downfall of the originally proposed

architecture, the MinMax Table.

2. Prototype Diagnostic Network Architecture

The architecture utilized for the diagnostics neural

networks that follow was essentially a synthesis of the simple

diagnostic model and the component isolating upper level

network described above. In essence, the simple diagnostic

model succeeded in providing both locatiwn and severity

information on its own in that it provided a severity

indication for a frequency or other parameter associated with

a particular component based on a dB difference as an input.

Its only drawback was that it was auto-associative, having the

same number of inputs as outputs. The upper level network

possessed hetero-associative characteristics in that the

number of inputs differed from that of the outputs. The only

other difference between the two preliminary networks was that

one provided a non-linear mapping of a series of inputs with

a comparatively wide variation of values into a series of

outputs varying from 0.0 to 1.0, whereas the other received

such a series of outputs. If the input to each PE in the input

layer was normalized with respect to all other inputs to that

PE so that the inputs were provided equal weight at the start

of training, the need for the lower level network could be

eliminated and both location and severity indicating tasks
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could be combined in one network. The MinMax Table provides

for this.

Neuralware Inc's MinMax routine is a simple algorithm

which, prior to the presentation of a matrix of training

vectors, scans the matrix by columns, picks out the maximum

and minimum value, and normalizes all other intermediary

values with respect to them. These normalized values are then

retained in this normalized state or mapped linearly to

another range of values at the discretion of the

operator[Ref.8].

All of the prototype neural networks presented

utilized the cumulative delta rule modification to the

standard backpropagation algorithm described in Chapter II.

They also utilized learning coefficients that decreased in

steps as a function of the total number of training

presentations. All processing elements in the hidden and

output layer utilized the sigmoidal transfer function, while

the input layer utilized a linear transfer function. No F'

offset or momentum term was necessary.

The epoch size utilized in the cumulative delta rule

varied from between 58 and 62 and the number of vectors in the

training sets varied between 60 and 69. The slight deviation

of the epoch size from the number of vectors in the training

sets was intended to keep the sequence of training

presentations between updates of the weights as varied as

possible.
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In the Neuralworks Professional II backpropagation

routine, the order of test set presentation can be sequential

or randomized immediately prior to training at the operator's

discretion. In general it is desirable to present these

vectors randomly. However, during the training process the

training vectors are only randomized once. Thus the order of

presentation does not change. If the number of training

vectors is identical to the epoch size, the network updates

the weights time after time on the same ordered presentation

of vectors. If the epoch size is kept slightly less than the

number of vectors in the training set, the network will update

not having seen the entire training set. The following set of

vectors presented to the network will pick up where the last

epoch left off, considerably improving the variety of training

vector sets presented to the network.

Schematics of the prototype diagnostics networks are

provided in Figures 39, 40, and 41. The prototype diagnostic

network each consisted of from 18 to 25 PE's in the input

layer, 27 PE's in an hidden layer, and 7 PE's in the output

layer. The outputs corresponded to the machinery component

experiencing the fault and consisted of the high speed shaft

(SI), the low speed shaft (S2), the high speed bearing inner

race (BI), the high speed bearing outer race (BO), the bearing

balls (BB), the 15 tooth drive pinion (Gl), and the 50 tooth

driven gear (G2).
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Figure 39 Diagnostic Neural Network Utilizing Frequency and
Sideband Averaging Inputs

The inputs were limited to the dB levels for the

frequencies and quefrencies monitored throughout the

data extraction period. Three neural networks were developed.

The first one employed purely frequency domain inputs and

included the four frequencies corresponding to the shafts,

five bearing frequencies, the three gear mesh frequencies, and

the averages of the first three sidebands on each side of each

of the gear mesh frequencies, totaling 18 inputs. A schematic

of this network is provided in Figure 39. In the second

network, the six sideband averaging inputs were replaced with

three cepstral inputs associated with the gears and four

cepstral inputs associated with the bearings, totaling 19
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Figure 40 Diagnostic Neural Network Utilizing Frequency and
Cepstral Inputs

inputs. Figure 40 illustrates this network. The third network

utilized all monitored frequencies and quefrencies for a total

of 25 inputs and is illustrated in Figure 41.

The initial number of hidden elements was determined

by interpolating the results of the network sensitivity

studies described in Chapter IV. Here it was determined that

six hidden elements reached a 15% convergence level before any

of the other networks studied and exhibited a high degree of

stability as the error level declined. While Networks

possessing fewer hidden elements also achieved convergence,

they took longer to reach the 15% convergence level. Those

with greater than six hidden elements became increasingly
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Figure 41 Diagnostic Neural Network Utilizing Combined
Frequency, Cepstrum, and Sideband Averaging Inputs

unstable with respect to output error as the number of hidden

elements increased. Since the number of hidden elements in the

six hidden element network was 1.5 times the number of input

elements and the input data was similar, the initial number of

hidden elements in the prototype networks was determined to be

1.5 times the number of input elements. Thus the number of

hidden elements for the sideband averaging and cepstrum

networks was set at 27, while the number of hidden elements in

the combined network was set initially at 38. Additionally, to

reduce the computational burden of a large number of
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connections with negligible excitation, a "prune network"

feature was used. This feature permanently sets inactive

connection weights to zero if after a given number of training

iterations, the maximum activation energy fell below a set

level. In the networks under consideration this parameter was

checked every 10,000 iterations and the maximum activation

threshold was set at 0.05[Ref.8]. This would appear to be a

rather conservative figure as, during the training process for

these networks, no connections were "pruned".

B. DESCRIPTION OF DATA SETS

The nature of the data sets utilized for training is

critical to the success of a practical neural network based

machinery diagnostic system. Especially important is the

nature of any preprocessing done to the data prior to its

input into the neural network. Clearly, a neural network's

task in recognizing patterns can be made easier and thus,

successful convergence of the error function can occur more

quickly if the engineer's knowledge about the data base can be

incorporated in the inputs before learning takes place. A

possible danger also lies in incorporating too much a priori

knowledge in that the neural network will be overly

constrained, thereby losing the opportunity to identify

relationships in the data that may not have been noted by the

engineer.
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For this research two different types of training sets

were utilized for each of the prototype machinery diagnostics

neural networks proposed. The first type of training set used

consisted of 69 input vectors that were generated

artificially, based on long established associations between

certain frequencies and quefrencies and machinery faults. The

second type of training set was extracted directly from

empirical data obtained from the set of experiments described

in Chapter V. Additionally, test sets containing data similar

to that found in the parent training sets but nonetheless

unique were built.

In this section, a detailed description of the data sets

is provided. Details common to all data sets utilized are

discussed first, followed by those aspects unique to each

particular type of data set.

1. General Considerations

There were a number of considerations common to all

data sets generated for use on the neural networks. A number

of preprocessing steps were included to simplify the problem

presented to the networks. Other preprocessing steps were

accomplished because the networks simply appeared to have

excessive difficulty solving the problem without the

preprocessing.

In a manner patterned after the Navy surface ship

machinery condition monitoring program, all measurements were
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reduced to dB differences relative to an established baseline.

Additionally, all data was passed through the HinMax

normalization routine described above prior to being entered

into the networks. While the raw dB values would have been

normalized in the same manner as the dB difference values,

their singularly negative values appeared to impose an

excessive burden to the neural network without any significant

return. Furthermore, expression of the values as differences

from a baseline had the advantage of allowing the operator to

recognize the relative strength of the signal at a glance and

was in keeping with current practice. Thus the dB difference

input form was retained.

Several attempts were made to train a network

featuring training data with signed dB differences. As the

sign of the dB difference had a major impact on the

contribution of that particular input to the overall

diagnosis, recognition of the sign of the input was highly

desirable. Initial attempts involved lower level severity

indicating networks with a signed input and an unsigned

severity rating output. These were attempted with both sigmoid

and hyperbolic tangent transfer functions. Follow on attempts

exploited the positive and negative ranges of the hyperbolic

tangent featuring both signed inputs and outputs. None of

these variations provided a satisfactory convergence.

Initially the positive nature of the sigmoid transfer

function was blamed for the difficulty. However, when it was
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determined that the hyperbolic tangent transfer function was

similarly unsuccessful, it was conjectured that the source of

the problem lay in the way in which the backpropagation

algorithm calculated error. Because it calculated the mean

squared value of the error, the sign information was lost,

thus leading to the difficulty.

Training sets that either truncated negative

differences to zero or utilized absolute valued dB differences

were considered. However, truncated dB differences were

expected to significantly reduce the effectiveness of the gear

mesh frequencies which often experienced reductions in dB

level in cases of gear related faults. Absolute valued dB

differences were expected to give unwarranted weight to lower

frequency signals from the shafts and bearings which often

declined in cases of gear faults. As a compromise, it was

decided to enter negative dB differences into the training

sets as zeros except for the gear mesh frequencies, where the

absolute values were taken.

2. Artificially Generated Data Sets

Of the two types of data sets constructed, the

artificially generated data set was by far the more difficult.

Two training data sets were constructed, one for the network

including sideband averaged inputs and one for the network

including cepstral inputs. Each contained 69 input vectors.
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These data sets presented data that was generated

following established rules in machinery diagnostics. In these

sets the system components were assumed to be essentially

uncoupled, and the location of machinery faults was assumed to

follow the following "rules".

" If the machine had elevated dB levels at the frequencies
of 9 Hz or 18 Hz, the fault was assumed to be located at
the low speed shaft (S2).

" If the machine had elevated dB levels at the frequencies
of 30 or 60 Hz, the high speed shaft was the source of the
fault (SI).

" If the machine had elevated dB levels at the frequencies
of 92 or 184 Hz, or at the quefrency of 10.9 ms or the
averaged 10.9 ms rahmonics, a fault existed at the outer
race of the bearing (BO).

" If the machine had elevated dB levels at the frequencies
of 118 or 236 Hz, or at the quefrency of 8.5 ms, a fault
had occurred at the bearing inner race (BI).

" If the machine had elevated dB levels at 103 Hz or at a
quefrency of 9.7 Hz, the fault was located at one of the
bearing balls (BB).

" If the machine experienced elevated or depressed dB lev:Is
at the gear mesh frequencies of 450, 900, or 1350 Hz, a
fault existed in one of the two gears or both.

" If the machine experienced elevated dB levels in any of
the averaged 9 Hz sideband inputs, or at a quefrency of
111 ms, a fault existed in the 50 tooth gear (G2).

" If the machine had elevated dB levels in any of the
averaged 30 Hz inputs, or at a quefrency of 33.3 ms, a
fault existed on the 15 tooth gear (GI).

" If the magnitude of all associated inputs to a particular
component were beneath their established low severity
fault thresholds, no fault existed for that component.
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Severity levels were established in a manner similar

to that described in Chapter IV except that in this model, the

severity level thresholds were based on the standard

deviations measured in the baseline establishing experiments

described in Chapter V. The "Low" severity fault level was

based on the propagation of error formula for standard

deviations using all baseline experiments."Moderate" and

"High" severity fault levels were obtained by adding one or

two of the highest standard deviations for that parameter in

the three test sets, respectively to the "Low" severity

threshold. This procedure is in keeping with most vibration

monitoring manuals which indicate that a machinery fault can

be expected to exist if the signal exceeds two standard

deviations, which corresponds to a severity level between the

low and moderate severities established in this

research[Ref.27]. A listing of the severity thresholds used is

provided in Table XI.

In preliminary experiments severity levels were

established by devoting at least two training vectors to

establish the high and low boundaries for all parameters.

However, the networks trained in this manner had difficulty in

discerning the boundary and, like the networks described in

Chapter IV, performed poorly in the immediate area of the

severity thresholds. By training in this manner, the network

was unduly constrained and forced to accurately identify

setpoints, a task where the essentially analog neural network
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Table XI. Severity Thresholds for Artificially Generated Data
Sets

6U)"' 9.0 18.0 30.0 60.0 92.0 103 118 184 236

First 4.5 4.5 4.1 2.5 4.1 2.0 3.6 6.6 5.9Thzechnld------------------------
Subsequent 3.5 3.4 2.0 2.5 2.7 2.0 3.0 2.6 3.1

No Fault 2.3 2.3 2.1 1.3 2.1 1.0 1.8 3.3 3.0M~edlian

ow Severity 6.3 6.2 5.1 3.8 5.5 3.0 4.8 7.9 7.5UrldilnI

oderate ev 9.8 9.6 7.1 6.3 8.2 5.0 7.1 10.5 10.6kMediainII

11h Severity 13.3 13.0 9.1 8.8 10.9 7.0 9.4 13.1 13.7

Fr(Hz)nc" 450 9SB 3OSB 900 9SB 30SB 1350 9SB 30SB

First 4.1 3.2 3.0 2.0 2.0 2.3 3.2 2.9 2.0
rThe-ch l1d- -

Subsequent 2.0 2.0 2.0 2.0 2.0 2.0 3.3 2.3 2.0Threjn&

No Fault 2.1 1.6 1.5 1.0 1.0 1.2 1.6 1.5 1.0

Lw Severity 5.1 4.2 4.0 3.0 3.0 3.3 4.9 4.1 3.0
- Udian--
Moderate Sev 7.1 6.2 6.0 5.0 5.0 5.3 8.2 6.4 5.0

igh Severity 9.1 8.2 8.0 7.0 7.0 7.3 11.5 8.7 7.0Mredirn

Cepstrum -
(Ms) 8.5 9.7 10.9 10.9Av 33.3 3.3Av III

First 0.5 1.0 0.5 0.4 0.9 0.7 1.0

Subsequent 0.5 1.0 0.5 0.4 0.9 0.7 1.0Threhnlric

No Fault 0.3 0.5 0.3 0.2 0.5 0.4 0.5
4dian

.ow Severity 0.8 1.5 0.8 0.6 1.4 1.1 1.5
k~d ian
oderate Sev 1.3 2.5 1.3 1.0 2.3 1.8 2.5

-igh Severity 1.8 3.5 1.8 1.4 3.2 2.5 3.5

is categorically inefficient. It also forces a network of

continuous transfer functions to provide a step output,

another difficult task.

Better results were achieved in the prototype networks

by concentrating training of the networks on the middle value

of the desired severity region as opposed to the threshold.
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Once the center of the severity region was established, the

continuous nature of the transfer functions in the PE's would

allow for interpolation of deviations from these median

values. In essence, the constraints in the preliminary

networks were relaxed and the network was allowed to establish

the severity boundaries on its own, having the centers of the

regions fixed instead. The difference in the means of defining

the decision space is illustrated for a two dimensional case

in Figure 42.
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Figure 42 Severity Level Definition in (A) Preliminary

Networks and (B) Prototype Networks

To further fix the centers of each severity region,

the networks were only trained using the midpoint values at

the desired severity region. Only in the training sets

defining the no fault region were variations from these middle

values permitted.

The desired outputs of the vectors in these data sets

were established according to the procedures established in

Chapter IV; that is, with outputs of 0.3, 0.6, and 0.9

corresponding to the three severity levels. Because of the

fact that median values in each severity level were being used
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in training, the desired output assigned for machinery

components experiencing no faults was 0.1 vice the 0.0 output

assigned in Chapter IV.

The test sets involved deviations about the mean

severity level values, thereby providing for unique but

similar vectors to those presented in the training set. In

addition, a few new vectors, requiring a variation in the

desired severity level output were included. The test sets

contained a total of 63 vectors each.

3. Empirical Data Sets

The empirical data sets were comparatively easy to

establish. All vectors were acquired by calculating the dB

difference between the measured parameters and the established

baselines. Half of the preprocessed vectors from each test set

were used in the training sets while the other half were used

in the test sets.

The severity criterion used in these sets was based on

the assessment of the degree of physical damage discussed in

Chapter V. If there was no fault associated with a particular

machinery component, it was assigned a desired output severity

level of zero. Clearly, there despite continuous pains to

minimize it there was still some degree of mismatch between

the severity criteria in the artificially generated and

empirical data sets. This difficulty would manifest itself in
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the results involving networks trained on artificially

generated data but tested on empirical data.

C. PRESENTATION AND DISCUSSION OF RESULTS

A total of five prototype networks were trained and

tested. The cepstrum and sideband averaging networks were each

trained and tested on both artificially generated and

empirical data, while the combined cepstrum and sideband

averaging network was only trained and tested on empirical

data. This section will describe and discuss the results of

these tests. Additionally the results of a few tests stemming

from networks trained nn slightly erroneous data will be

discussed. These erroneous test sets are included because they

provide an insight to the robustness of the neural network as

well as emphasizing the importance of verifying the

correctness of the training set before training commences.

Because the networks trained on erroneous data were

subsequently trained on corrected data sets without starting

afresh, their follow-on performance yields insight into the

backpropagation neural network's capability to be updated as

the data base changes over time. Before a discussion of the

results is made, an explanation of how these results were

derived is in order. A "correct diagnosis" was considered to

have occurred if the network correctly identified the location

of the fault, if there was one, or correctly identified no

fault to exist if there was not. If the network correctly
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identified the fault but also identified a lesser fault

somewhere else whose severity level was sufficiently close to

that of the principal fault so as to be possibly misconstrued

to be the primary fault, a potential misdiagnosis was deemed

to occur, which was treated as "50% correct". Additionally, in

cases of multiple faults, the failure to identify any one

faulty location while correctly identifying the principal

fault and any other lesser faults was determined only to be a

potential misdiagnosis. Blatant misdiagnoses were of course

treated as such.

Severity error refers to the difference between desired

output and actual output. Each vector was assigned to one of

the four severity regions according to its highest severity

error. When considering severity error, it must be remembered

that the networks trained to artificially generated data were

trained to median severity values. Thus a severity error of

between 15 to 25 percent is not necessarily an unexpected or

bad thing. However, errors greater than 25 percent should be

regarded with some degree of suspicion. Most of the cases of

blatant misdiagnosis stem from severity errors greater than 25

percent but in some cases, especially where low severity

levels were involved, a potential misdiagnosis or even a

blatant misdiagnosis could and did occur with errors as low as

10 percent.

In the sections to follow, tables are used to summarize

the test results. Included in the tables is a distribution of
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severity errors among the seven outputs. When viewing this

severity distribution data for the empirical test and training

sets , it must be borne in mind that the bulk of the empirical

data obtained involves gear related faults. Consequently

several of the other components are only stimulated a few

times. Thus while it may appear that the Shaft 1 output

generated less error than Gears 1 and 2, it actually performed

less well when not reporting a no fault condition.

1. Network with Sideband Averaging Inputs

a. Artificially Trained Network Response

The sideband averaging network was first trained

using artificially generated data to an RMS error level of

0.065 after 355,374 presentations of the training data set.

This network was subsequently tested on the data set it was

trained on, a separate artificially generated test set, and on

a test set containing empirical data. A summary of the results

of these tests is provided in Table XII.

Of the five prototype networks trained, the

sideband averaging network "learned" its training set best,

succeeding in correctly identifying 100 percent of the faults

and determining the severity level to within 20 percent in

almost 90 percent of the cases. The network performance when

presented the artificially generated test set resulted in only

a 4.0 percent degradation in correct diagnoses. Severity level

error only degraded by 6.0 percent. However, the network
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Table XII. Artificially Trained Sideband Averaging Network
Test Response

Artificial Artificial Empirical
Training Set Test Set Test Set

Correct 100% 96.4% 77.5%
Diagnosis

< 20% Error 89.8% 83.8% 28.3%

< 15% Error 78.3% 70.5% 25.0%

< 10% Error 56.5% 44.1% 16.7%

Location of Severity Errors, Artificial Training Set

Error S2 S1 BO BI BB G2 G1

>20% 0 1 1 2 0 1 1

15-20 1 2 2 2 0 2 3

10-15 4 2 3 1 2 4 1

< 10% 64 64 63 64 67 62 64

Severity Error Location For Artificial Test Set

> 20% 0 2 2 6 0 2 3

15-20 2 1 2 1 1 1 3

10-15 2 3 2 4 3 6 7

< 10% 64 62 62 57 64 59 55

Severity Error Location For Empirical Test Set

> 20% 7 10 7 11 8 18 23

15-20 1 5 1 2 4 1 6

10-15 2 2 2 6 4 2 6

< 10% 50 43 50 41 44 39 25

performance on the empirical data test set was disappointing.

Only 77.5 percent of the test vectors were successfully
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diagnosed, while only 28 percent of the test cases had all

severity level errors less than 20 percent.

The network trained on artificially generated data

responded well when presented with artificially generated test

data. However, faults where a single input provided the only

indication of the fault were consistently underestimated. This

is not overly surprising when considering the manner by which

the network output is attained. Furthei, most prudent

machinery diagnostics "experts" look at a fault identified by

a single high parameter with a jaundiced view, tending to

verify the calibration of the particular instrument before

taking corrective action.

The rather disappointing network response to

empirical data can be partially explained by noting that the

rules under which the network was trained did not account for

the coupling between the various machinery components. Even if

it had been included, it would not have been expected that the

coupled component would register a higher severity level than

the component experiencing the fault. This was precisely what

occurred in several of the shaft related faults. Although the

networks were unable to identify the shaft as the source of

the fault, they did faithfully register faults on the

components whose associated inputs received high dB levels,

which was what the network was trained to do. Another

situation glaringly evident from the network response to

empirical test data was the fact that increased dB level is
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not the only determinant in the severity of physical damage to

the equipment.

b. Empirically Trained Network Response

The sideband averaging diagnostic neural network

trained on a data set of empirical data reached a level of

0.075 RMS error after 187,218 iterations. A summary of the

test results for the empirically trained sideband network is

presented in Table XIII. When tested on the same data it

performed at a level only 4.8 percent below that of the

artificially trained network tested on the training set. When

tested on new data the network suffered a significant

degradation but a general diagnosis success rate and severity

error rate 11.4 percent better and 82.6 percent better,

respectively than that of the artificially trained network

tested on empirical data. While severity level accuracy -n the

declined by 40.2 percent between the tests on the training

data and the previously unseen data, fault location capability

remained fairly high, degrading by only 8.5 percent.

Notable areas of weakness were in detecting the

high speed shaft faults and identifying weak faults on Gear 1

when coupled with severe shaft faults. Another area of

weakness lay in identifying borderline low severity Gear 1

faults in the data extracted from Gear Test 1-4 described in

Chapter V.
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Table XIII. Summary of Empirically Trained Sideband Averaging
Network Test Results

Training Set Test Set

Successful 95.2% 86.7%
Diagnosis

Severity 91.9% 51.7%
Error < 20%

Severity 74.2% 41.7%
Error < 15%

Severity 61.3% 30.0%
Error < 10%

Empirical Training Set Severity Error Location

Error S2 S1 BO BI BB G2 G1

> 20% 0 3 0 0 0 1 1

15-20 0 0 0 0 0 1 10

10-15 0 0 1 1 1 2 7

< 10% 62 59 61 61 61 58 44

Empirical Test Set Severity Error Location

> 20% 0 3 2 2 2 10 16

15-20 0 0 0 0 0 3 6

10-15 0 0 0 0 0 1 10

< 10% 60 57 58 58 58 46 28

2. Networks With Cepstral Inputs

a. Network Trained on Artificially Generated Data

The Cepstral network was tested after reaching an

RMS error of 0.068 after 663,000 iterations, of which 250,000

occurred after correcting a minor error in the training

set.This network performed in a manner similar to that of
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their sideband network counterparts. This network was very

successful in determining the location of the machinery faults

on the artificially generated training set and test set,

successfully diagnosing the location of these faults in all

but one case. Furthermore, severity errors were the smallest

found in any of the networks tested. However, the test

response to presentation of the empirical test set was

considerably less successful than in the case of the sideband

networks, primarily due to a paucity of cepstral information

provided in the cases where both Gear 1 and Gear 2 were

damaged (Gear Test 1-10) and in several cases involving

damage to Shaft 2, where strong 33.3 ms cepstral signals

mislead the network into identifying Gear 2 as the source of

the fault. Additionally, because of elevated 30 or 60 Hz

signals in the more severe gear faults, the network tended to

downplay the importance of these signals. Table XIV provides

a summary of these results.

b. Empirically Trained Network

The empirically trained version of the cepstral

network was tested upon achieving an RMS error of 0.095 after

532710 iterations. Like its artificially trained counterpart,

it performed poorly on gear faults involving Gear 2 where 111

ms cepstrum input did not register. The other place where this

network performed poorly was on faults involving Shaft 1,

where, because of elevated 30 or 60 Hz signals in the more
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Table XIV. Test Results for Cepstrum Network Trained on
Artificially Generated Data

Artificial Artificial Empirical
Training Set Test Set Test Set

Correct 99.3% 100% 61.7%
Diagnosis

< 20% Error 85.5% 84.1% 26.7%

< 15% Error 79.7% 68.1% 21.7%

< 10% Error 60.8% 56.5% 15.0%

Errr 2 S1 BBIB G1 G2

Artificial Training Set Severity Error Location

>20% 1 2 4 2 2 1 2

15-20 0 1 2 0 0 1 0

10-15 4 2 2 2 2 4 2

<10% 64 64 61 65 65 63 Fi65

Artificial Test Set Severity Error Location

>20% 3 2 3 4 4 1 1

15-20 0 4 2 3 2 2 1

10-15 2 2 1 1 1 1 4

<10% 64 61 63 61 62 65 63

Empirical Test Set Severity Error Location

>20% 7 6 8 16 2 17 17

15-20 2 3 1 3 4 4 2

10-15 1 0 2 1 3 7 3

<10% 50 51 49 40 51 32 38

severe gear faults, the network tended to downplay the

importance of these signals. However, overall, the

empirically trained network performed quite well compared to
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the artificially trained network tested on empirical data,

outperforming the artificially trained network by 32.3 percent

in fault location identification and by 68.5 percent in

severity error. Its performance was slightly less impressive

than that of the empirically trained sideband averaging

network, successfully diagnosing 6.0 percent fewer test

vectors and possessing a 6.0 percent higher severity error,

but its performance was comparable. A summary of the results

of these tests are presented in Table XV.

c. Erroneous Training Sets

During the training of the prototype networks,

cepstral networks were inadvertently trained on data sets

which contained one or two clerical errors among the 60 or

more vectors involved which degraded these sets' utility with

respect to establishing an effective machinery diagnostics

system. They were subsequently retrained with corrected data

sets. However, the limited manner by which these errors

degraded the test response lends insight into the robustness

of the neural networks and their tolerance to noisy data.

Because of this, their test response is also reported.

The cepstrum network trained on noisy artificial

data was tested after reaching an RMS error of 0.085 after

409,371 iterations. Surprisingly enough, the cepstrum networks

trained on this slightly faulty data performed almost as well

as the networks trained on correct data. The results of these
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Table XV. Test Results for Empirically Trained Network with
Cepstral Inputs

Training Set Test Set

Correct 93.5% 81.7%
Diagnosis

<20% Error 88.7% 45.0%

<15% Error 71.0% 31.6%

<10% Error 53.2% 26.7%

Error S2 S1 BO BI BB G1 G2

Severity Error Location for Empirical Training Set

>20% 0 3 0 0 0 3 2

15-20 0 0 0 0 0 11 3

10-15 1 1 0 0 0 8 5

<10% 61 58 62 62 62 40 52

Severity Error Location for Empirical Test Set

>20% 0 3 0 0 0 24 12

15-20 1 0 0 0 0 7 5

10-15 3 2 0 0 0 2 3

<10% 56 55 60 60 60 22 40

tests, compared to their counterparts trained on correct data

are presented in Table XVI.

Because the errors involved in the training set

were relatively minor, it was decided to simply continue

training using the corrected training set rather than

reinitializing the network and starting training afresh.

Although the errors to the training set occurred in the input

vectors, the desired output was altered in the corrected

158



Table XVI. Comparison of Cepstral Network Trained on Slightly
Faulty Data and Correct Data

Correct < 20% < 15% < 10%
Diag. Error Error Error

Faulty Training 97.1% 82.6% 72.5% 59.4%
Set

Correct Training 99.3% 85.5% 79.7% 60.8%
Set

Faulty Test Set 95.6% 75.4% 68.1% 56.5%

Correct Test Set 100% 84.1% 68.1% 56.5%

training set to speed up learning, as this would produce

strong error signals directly, rather than allowing the change

to be filtered through the entire network. Indeed, observation

of the RMS error immediately after continuing training

revealed a substantial increase in RMS error which eventually

subsided, confirming the effectiveness of the approach.

Fortunately the errors occurred in the artificially trained

network. Had they occurred in the empirically trained network,

this method would not have been appropriate.

In the previous case, the error involved an error

in the inputs which altered the severity level required at a

desired output from a 0.1 to a 0.3 and another one from a 0.3

to a 0.6. The next case involves a considerably more severe

clerical error, where the location of a high severity fault

was shifted from Gear 1 to Gear 2 in one sample vector. Here

reinitialization of the network was considered prudent due to

the magnitude of the error. The effect of the error was to
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suppress the severity levels experienced by the component

where faults were actually occurring but the whose desired

output indicated a no fault condition and to amplify the low

dB signals associated with the component which in reality was

experiencing no fault at all. In spite of this error which

confused the network somewhat, the network still was capable

of performing quite well, exceeding the performance of

networks trained on artificially generated data on empirical

test sets. A summary of these test results are provided in

Table XVII. Interestingly, the network trained on erroneous

data actually performed about 6.0 percent better than the

empirical test set than did the network trained on correct

data.

These two examples, inadvertently happened upon,

serve to demonstrate the robustness of the neural network

diagnostic system. It is doubtful that a rule based expert

system would have been able to perform as well with

conflicting data. The first example also demonstrates the

ability for the network to update its data base without having

to start training from scratch.

3. Combined Sideband and Cepstrum Diagnostics Network

Because of the paucity of cepstral information in the

empirical data on several of the faults involving both Gears

1 and 2, as well as difficulties in identifying faults

involving Shaft 1, a machinery diagnostics neural network
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Table XVII. Comparison of Networks Trained on Erroneous and
Corrected Empirical Data

Correct < 20% < 15% < 10%
Diagnosis Severity Severity Severity

Error Error Error

Erroneous
Training 91.9% 75.8% 61.3% 41.9%
Set

Correct
Training 95.2% 91.9% 74.2% 61.3%
Set

Erroneous 83.3% 61.7% 48.3% 36.7%
Test Set I I I

Correct 86.7% 51.7% 41.7% 30.7%
Test Set

combining both cepstral and sideband averaging inputs was

built, trained, and tested. Only empirical data was used as

there was no difficulty in training and testing the previous

two networks on artificially generated data. This network was

tested after 444,981 iterations of the training set and

achieving an RMS error of 0.09. Test results are presented in

Table XVIII.

Compared with the sideband averaging network trained

on empirical data, the combined network performed equally well

when determining location of the fafilts and had improved by

approximately 13 percent in severity error. When tested on the

empirical test set it performed 1.7 percent better in fault

location and 9.4 percent better in severity the accuracy of

its severity indication.
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Table XIII. Test Results for Combined Network Trained on
Empirical Data Sets

Empirical Training Empirical Test Set
Set

Correct 95.2% 88.3%
Diagnosis

* 20% Error 95.2% 60.0%

< 15% Error 90.3% 51.7%

< 10% Error 85.5% 40.0%

Error S2 S I BO BI BB GI G2

Severity Error Distribution: Empirical Training Set

>20% 0 3 0 0 0 0 0

15-20 0 0 0 0 0 3 0

10-15 0 0 0 0 0 3 0

<10% 62 59 62 62 62 56 62

Severity Error Distribution: Empirical Test Set

>20% 0 3 0 0 0 12 9

15-20 0 0 1 1 1 4 2

10-15 1 0 0 0 0 8 2

<10% 59 57 59 59 59 36 47

Comparison to the cepstral network performance on

empirical data yields even more impressive results. When

responding to the training set, the combined network

outperformed the cepstral network by 1.7 percent in fault

location and 19.7 percent in severity accuracy. Combined

network response against the empirical test set was also

impressive. It outperformed the cepstral network by 6.7

percent in fault identification and by 16.1 percent in
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severity accuracy. However, even with all data obtained from

the experiments performed, the fault to Shaft I could not be

identified, indicating that the shaft frequency signals were

too small for recognition compared to the considerably larger

gear vibrations also in progress.

4. Results of Extended Learning

All network training and testing conducted up to this

point was conducted on either an IBM 286 or 386 personal

computer. On the 386 computer,also equipped with a math

coprocessor, neural networks with the number of PE's of the

order utilized in this research commonly required 12 hours to

conduct 200,000 training iterations. Very late into this

research, a Unix SUN Spark station became available. The

cepstrum network and its associated empirical data training

set were loaded and run on this station overnight for 4.5

million training iterations using the standard backpropagation

algorithm. At this length of training the RMS error was

reduced to 0.01 and the response to the training set resulted

in 100 percent successful fault location and 100 percent of

the severity determinations remaining at less than 10.0

percent error.

D. EVALUATION OF EMPIRICAL INPUTS

In this section an analysis of the relative effectiveness

of the inputs selected for the neural networks will be made.

As a whole, judging from the overall effectiveness of the
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various networks, it would appear that the inputs encompassed

the decision space for the networks fairly well with a few

notable exceptions. None of the three networks adequately

identified the actual fault experienced by the high speed

shaft. This could be either due to shortcomings in the data

set or in the inputs themselves. Proper determination of this

would require expanding the data set to incorporate additional

examples of shaft and bearing faults. Additionally, based on

the cepstral network response to empirical data, it would

appear that for the machine studied, cepstral inputs alone

were insufficient to identify faults involving both gears,

since sideband and combined networks were able to correctly

diagnose these faults.

A good source of insight into the relative effectiveness

of the various inputs may lie in observing what inputs were

important to the empirically trained networks following their

long periods of training. While theoretically, the information

by which the neural network separates the decision space can

be found in the hidden PE's, the source of most feature

extraction. However, thus far no knowledge has been amassed as

to how this knowledge might be extracted[Ref.19].

A more primitive and less comprehensive alternate means to

obtain a feel for the relative importance of the various

inputs may come from sequentially stimulating input neurons

(processing elements) and observing the resulting output, much

like a doctor checking nervous reflexes. This was attempted by
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constructing a test data set which was constructed of vectors

that provided a maximum input to one input node while

providing zeros to all of the others. This methodology was

applied to all three of the empirically trained networks. They

reveal some startling results.
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Table XIX. Combined Network Response to Sequential Input
Neuron Stimulation

H7Y q)(n IR (n MIN n An ( qq N n IRd r l in AI R 7-4f, rR r n:A rq 17

S2 54.9 80.4 0.7 0.0 5.0 8.4 17.9 9.4 0.2 2.3 1.8 1.9 39.6

SI 0.1 0.0 0.0 0.0 0.2 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.3

BO 0.2 0.0 0.0 0.0 4.8 0.5 2.8 0.4 0.1 0.4 0.8 0.4 0.3

BI 0.2 0.0 0.0 0.0 5.3 0.6 13.2 13.7 0.1 0.5 0.8 0.4 0.4

BB 0.2 0.0 0.0 0.0 5.1 0.6 3.1 13.8 0.1 0.5 0.9 0.4 0.4

S94.8 3.0 7 0.6 29.6 68.1 0.9 45.0

02 34.1 0.3 4.4 96.9 9.2 60.2 4.6 28.7 68.3 95.1 95.7 79.5 14.1

otal 1 1.6 5.0 9.7 10.1 4.8 0.7 1.5 2.8 6.6 2.3 3.9 2.7 0.4

Total output of the network due to a specific neural stimulation normalized by 10 0 over the
sum of the outputs due to the neural stimulations

R~eg

52 0.2 36.7 1.1 65.9 0.3 26.0 1.1 70.0 3.5 8.8 14.4 84.3

S 0.0 0. 00 0. 00 0. 00 0 0.0 0.3 0.2 0.0

BO 0.3 0.1 1.3 0.0 0.1 0.0 0.1 0.0 0.0 6.1 1.7 0.3

BI 0.3 0.2 1.3 0.0 0.1 0.0 0.2 0.0 0.0 6.0 1.6 0.4

BB 0.3 0.2 1.4 0.0 0.1 0.4 0.2 0.0 0.0 7.5 1.9 0.5

01 80.5 3.9 75.6 2.1 80.7 74.0 1.2 27.5 96.1 17.4 83.4 0.0

02 18.5 58.8 19.2 31.8 18.5 0.0 97.2 1.5 0.3 53.9 11.3 14.5

Total 13.1 3.0 3.7 1.9 3.4 8.8 4.4 0.5 1.7 1.0 0.8 5.4

The results of the neural stimulation test on the trained

combined network are summarized in Table XIX. The four

inputs that appear to have been used least by the network were

the 184 Hz signal, the 9 Hz sidebands about 1350 Hz, and the

9.7 ms and 33.3 ms average cepstral inputs. By far the

greatest bulk of the output activation occurred in those
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output neurons that received the greatest overall stimulation

throughout the training process; that is, the two gears.

Certain inputs were used by the neural network to provide

strong output signdls to components that they were not

directly associated with. The more notable associations

include those linking the 60 Hz signal to Gear 2, the bearing

frequency and cepstral domain signals to either or both of the

gears, particularly for 92 and 184 Hz and their related

cepstral signals; and the Ii ms cepstrum to Shaft 1. The

network frequently linked gear related cepstral inputs to the

corresponding shafts, which is understandable. Randall[Ref.34]

indicates that in broad band cepstra the low frequencies

associated with the shafts often affect the q-efrencies

associated with the gears and thus suggests that a band pass

filter be utilized to cut the low frequencies out. Finally

there is the very noticeable fact that shaft 1 received no

significant activation from any of the inputs.

The other two networks performed in a similar manner to

that observed in the combined network. One notable exception

is that the Shaft 1 output in the cepstrum network is

considerably more strongly represented than in either the

sideband averaging network or the combined network. Presumably

the elimination of all output energy from Snaft 1 is derived

from the sideband averaging network. A coarse summary of these

test results is provided in Table XX.

167



Table XX. Cepstrua and Sideband Network Responses to
Sequential Neuron Stimulation

Sideband Averaging Network Response To Neuron Stimulation Test

Feuny 9.0 18.0 30.0 60.0 92.0 184 118 236 103

Dutput Signal
trength 1.3 7.8 13.7 4.4 3.8 1.1 5.9 1.3 3.5

'in ciple
ocation of S2,S I G1 01 02 B B 02 B B

econdary
cation(s) B (S2) B B 01.02 SI 01 02 02

(Hz)ec~ 450 9SB 30SB 900 9SB 30SB 1350 9SB 30SB

utput Signal
trength 10.4 4.9 9.0 7.5 1.5 7.2 5.6 0.7 2.9
N nzmlo I

imaryI
cation of 01 02 01 S2 01 GI,S2 02 S2 01

econdary
ocation of 0G2,B) B,SI1) B,Sl1 02 SIB (SI) (SI) S1I,B (SI)

A II I I
~epstrum Network Response To Neuron Stimulation Test

(uency 9.0 18.0 30.0 60.0 92.0 184 C 10.9 CI0.9 A 118 236

Dutput Signalf
3trenigth 4.2 5.6 10.4 4.2 4.1 1.7 1.7 4.2 9.5 2.2

-atnof S2 S2 G1 0 2 01 01 G1 1 B 02 02

e -con daiy
.cation(s) S1,01) £1.01)[SPe) GI1(SI: B.S I SI SI 51 01 51

FTeauency C8.5 103 C9.7 450 900 1350 C33.3 C33.3A CIII
-A .- -= - less

Dutput Signal than
31rength 6.8 8.7 4.4 10.9 3.7 3.0 4.1 1.4 10.0 15% of
UN~n.JL t __ - -1-00)_ - total'r imary output
ocation of 02 01 01 GI S2 SI 01 51 S2 signal

econ dary (01 G2()ls
ocation of (S1) S2,SI) (SI) (02) Sl 0252 SI 01 .02 1than 5%

The results of this section are not definitive. The

effects of multiple combined inputs, transfer functions,and

wide ranging connection weights have not been considered. The

purpose of this section is merely to gain a crude insight as

to the relative effectiveness of the various inputs. The

empirically trained networks still provide a diagnostics
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capability on real data that is consistently superior to that

provided by the artificially trained networks. What these

results do bring out is the probability that a wider data base

consisting of a larger proportion of shaft and bearing faults

may yield better results and a confirmation that 92 and 184 Hz

may have been confused from time to time with the much more

dominant shaft :-otation harmonics of 90 and 180 Hz. In spite

of this possibility, the networks performed remarkably well in

detecting the location and severity of the limited number of

bearing faults imposed during the experimental data extraction

phase of this research.
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VII SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY OF RESULTS

In preliminary experiments described in Chapter IV, a

rudimentary neural network architecture for machinery

diagnostics utilizing the historically successful

backpropagation algorithm was established. These simple four

input/four output networks were capable of determining the

location and severity of faults in between 85 and 90 percent

of the test vectors presented after training on artificially

generated data over less than 80,000 iterations. During these

experiments an optimal number of hidden nodes for that

particular network and type of training data was determined to

be between four and eight, with the six hidden node network

reaching an initial level of convergence in the least number

of vector presentations.

Following this, a data base was established for an

uncomplicated gear train system with multiple machinery

components by observing the vibration signatures at discrete

points in the frequency spectrum and cepstrum associated with

the machinery components of interest. After establishing a

baseline using undamaged components, machinery faults were

imposed and the system response was observed.
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The results from these experiments are discussed in detail

in Chapter V but the principal results were as follows. In

general, the physical system responded as would be expected

according to well established rules of machinery diagnostics.

However, the system experienced a larger degree of coupling

among machinery components and increases in physical damage

were found not always to result in increases in vibration

level.

While empirical data was still being obtained, the

prototype neural networks were being developed. These networks

were similar in architecture to the ones developed in the

preliminary experiments but were larger, hetero-associative,

and utilized the cumulative delta rule with sigmoid transfer

functions vice the normalized cumulative delta rule and

hyperbolic tangent transfer functions utilized in the

preliminary experiments. Additionally the prototype neural

networks utilized a linear mapping algorithm to normalize the

various inputs. Severity levels were established based on the

standard deviations observed at each input parameter during

baseline tests for use in artificially generated training sets

and based on engineering judgement for the empirical training

sets.

Three networks were developed; one using sideband

averaging inputs to assist in gear fault diagnostics, one

using ceptral inputs to aid in diagnostics of bearing and gear

faults, and one combining both sideband averaging and cepstral
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inputs with frequency domain inputs. Two of these prototype

networks were first trained and tested on artificially

generated data based on the established rules of machinery

diagnostics. These networks successfully diagnosed the fault

location for almost 100 percent of the sample vectors present

in the artificially generated training and test sets and

succeeded in keeping error in severity level below 20 percent

in 84 percent of the sample vectors presented. These tests

included multiple faults. When presented with empirical data,

correct diagnosis dropped to an average of 68 percent of the

test vectors and severity errors under 20 percent dropped to

a mere 27 percent. This was due to the strong coupling between

machinery components and the nonlinearities involved in the

correlation between severity level and vibration magnitude.

Cepstral networks performed slightly less well than sideband

averaging networks, presumably due to the reduced range of dB

values experienced in the cepstrum.

Then all three prototype networks were trained and tested

on empirical data. The networks were able to correctly

diagnose the location of the fault and kept severity error

below 20 percent in an average of 94.6 percent and 91.9

percent of the vector presentations, respectively. When

presented with the empirical test sets they averaged 85.6

percent for successful location diagnosis and 52.2 percent for

severity error less than 20 percent. While this is a

significant drop from the training set it is a substantial
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improvement over the empirical test results obtained from the

artificially trained networks. Of the three networks, the

combined network displayed the best performance while the

cepstrum network performance was least impressive.

Principal causes of the errors were a paucity of cepstral

information in the multiple gear fault cases, the indirect

relationship between dB level and physical damage, and the

consistent failure to identify faults associated with the high

speed shaft. The reasons for the third cause involve

misleading rises in the frequencies and quefrencies associated

with the high speed pinion, but more importantly, the tendency

for the shaft rotative frequencies to become elevated during

gear faults which tended to drive down the sensitivity of all

networks to faults involving the high speed shaft.

Late into the research, a SUN station became available for

limited use. After 4.5 million training presentations from the

empirical training set using the standard bacpropagation

algorithm, the network was able to correctly identify all

faults and correctly diagnose the severity level for all

vectors presented to within ten percent.

B. CONCLUSIONS

Based on the results cited above as well as in the body of

this paper, the following conclusions may be drawn.

All neural networks trained on actual and artificially

generated data demonstrated a capacity for simultaneous
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multiple fault detection, an area where conventional expert

systems have commonly fallen short.

Based on the results from the preliminary experiments and

the response of the artificially trained and tested networks,

it is clear that neural networks utilizing the architecture

noted in this paper are capable of being successfully trained

and tested on artificially generated data reflecting the

established rules of machinery diagnostics.

Disappointing results experienced with the artificially

trained networks tested on empirical data indicate that the

rules utilized for training did not adequately account for the

strong inter-component coupling associated especially with

small, light weight mechanical systems.

From the empirical data as well as the results from the

testing of the artificially trained networks on empirical

data, it is also clear that dB level and severity of physical

damage, while related, are not directly proportional.

Neural networks utilizing the architecture described in

this paper and trained on empirical data are capable of

reaching exceptional levels of convergence given sufficient

training as evidenced by the cepstrum training on the SUN

station. At less extreme lengths of training, these same

neural networks can achieve an acceptable level of

convergence.

Inasmuch as the network trained for an extensive period

was able to reach an exceptional level of convergence, it is

174



clear that, for the data set acquired, the inputs utilized

were sufficient to describe the decision space. However, the

failure of the empirically trained networks to successfully

identify faults to the high speed shaft at less extreme

lengths of training indicates that an investigation into

providing additional inputs or expanding the data base to

incorporate additional shaft and bearing fault information

would prove prudent.

Cepstrum networks inadvertently trained on artificially

generated and empirical data tainted with minor errors

suffered only a slight degradation of performance. This

demonstrates that neural networks of the architecture

described possess an inherent robustness and tolerance to

noisy data not generally found in conventional expert systems.

Finally, empirically trained networks consistently

outperformed artificially trained networks when tested on

empirical data. This indicates that the neural network was

able to discern both the non-linear relationship between dB

level and severity of physical damage and the coupling

relationships between machinery components. While by no means

comprehensive, the neuron stimulation tests clearly implied

that some of the relationships between frequencies and their

related components had changed. The artificially trained

network, in reality a rule based expert system by reason of

the method by which it was "taught", was incapable of learning

these relationships because they were not in the rule base.
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This demonstrates an inherent advantage of the data based

learning of the neural network over the rule based learning of

the conventional expert system.

C. RECONENMDATIONS FOR FURTHER STUDY

The research presented in this paper is by no means

complete. There remains a large number of areas for additional

study. Some of the many areas recommended for further

expansion include the following.

The data base utilized for this research is by no means

complete and warrants further expansion, particularly in the

number of shaft and bearing faults imposed. Additionally, the

data extracted in this research was generally obtained and

processed manually and was therefore painfully time consuming.

Automation of the data extraction, preprocessing and neural

network interface processes would reduce the opportunity for

error while increasing the number of faults that could be

imposed dramatically. Furthermore, the small size of the

machinery components enhanced the degree of coupling between

components in the system and reduced the loading on the

bearings to virtually nil. Because of this the gear vibrations

predominated throughout the spectrum and tended to mask out

the bearing vibrations. Increasing the size of the machinery

components could go a long way in alleviating this problem.

The accuracy of the artificially generated data base may

have been improved by employing a computational modal analysis
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routine to predict the response of uncomplicated machinery to

various faults. However, as the purpose of this research is to

obtain a diagnostic system for complex machines well beyond

the capabilities of current modal analysis techniqaes, this

approach may be self defeating. Another approach might be

patterned after the research conducted by Sejnowski and

Rosenfeld[Ref.39] in speech generation where a neural network

was trained using an existing rule based expert

system[Ref.19]. In a similar manner, artificially trained

diagnostic neural networks might be trained by an off-the-

shelf rule based expert system might yield improved results.

There is still substantial work available in optimizing

the network architecture. The two level network originally

planned for implementation in this research had to be

abandoned prematurely due to time constraints and a belatedly

discovered correctable error after an alternative architecture

capitalizing on the MinMax Table to replace the lower level

networks was found to work satisfactorily. Inasmuch as the

upper and lower level networks worked well independently, this

architecture may have proven optimal.

A substantial amount of effort was spent on attempting to

find a means by which to effectively train on signed inputs

and desired outputs. In an effort to circumvent this problem,

the data had to undergo additional preprocessing based on

statistical observations. While this may have been a practical

solution, information potentially useful to the network had to
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be discarded. Research into this problem may also reap

significant benefits.

This research primarily concentrated on the use of

backpropagation as the learning algorithm of choice due to its

historical success. However, although backpropagation has its

place in machinery diagnostics, it is data intensive.

Unfortunately, the data base available for most large

expensive machines is limited at best. Furthermore, it is

economically unfeasible to conduct destructive testing on the

large, expensive pieces of machinery that would stand to

benefit most from a machinery diagnostic system. Research into

the use neural networks utilizing unsupervised learning

algorithms such as the Adaptive Resonance Theory series under

development by Grossberg may prove to be a more practical

alternative.

This research has demonstrated that neural networks have

a place in machinery condition monitoring and diagnostics.

However the limited nature of these results indicate that

neural networks will not solve all machinery condition

monitoring and diagnostics problems by themselves. They

certainly will not completely replace conventional rule based

expert systems. Ultimately it is anticipated that a symbiotic

combination of these two technologies will provide the optimal

solution to the machinery condition monitoring and diagnostics

problem.
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APPENDIX A.

Sample Training and Test Sets Used in Preliminary Experiments.

Table Al. Sample Test Set Input and Output

INPUT OUTPUT

Xl X2 X3 X4 Y1 Y2 Y3 Y4

0.0 0.0 1.5 0.5 -0.0450 -0.0255 0.0063 -0.0033

0.0 0.2 0.7 0.5 -0.0457 -0.0217 -0.0215 -0.0018

1.8 1.2 0.7 0.5 0.0396 0.0098 -0.0237 -0.0172

0.2 1.4 1.7 0.3 -0.0411 0.0126 0.0181 -0.0072

0.8 1.7 0.9 0.7 -0.0247 0.0409 -0.0172 0.0001

2.5 1.2 1.4 1.0 0.2198 0.0097 -0.0002 -0.0139

0.7 2.8 1.2 0.9 -0.0262 0.2251 -0.0079 0.0117

0.9 3.2 1.8 2.1 -0.0249 0.3524 0.0281 0.1129

1.0 2.0 3.1 0.5 -0.0125 0.0498 0.3491 -0.0100

0.8 1.5 1.8 2.1 -0.0334 0.0199 0.0295 0.1124

4.7 2.2 1.1 0.8 0.6809 0.1157 -0.0196 -0.0479

0.5 2.8 0.7 4.2 -0.0718 0.2537 -0.0263 0.7299

0.8 2.8 5.3 0.3 -0.0131 0.2341 0.7457 -0.0110

6.2 2.2 1.1 0.8 0.8201 0.1177 -0.0198 -0.0521

1.1 6.9 1.8 2.1 -0.0111 0.8609 0.0269 0.1019

2.5 2.1 6.2 0.7 0.2073 0.0392 0.7926 -0.0297
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Table A2. Input and Desired Output of Training Set

INPUT DESIRED OUTPUT

Xl X2 X3 X4 Y1 Y2 Y3 Y4

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.0 0.0 0.3 0.0 0.0 0.0

1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0

2.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0

2.0 2.0 1.0 1.0 0.0 0.0 0.0 0.0

2.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0

2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0

2.0 1.0 2.0 1.0 0.0 0.0 0.0 0.0

1.0 2.0 1.0 1.0 0.0 0.0 0.0 0.0

2.5 1.0 1.0 1.0 0.3 0.0 0.0 0.0

2.5 2.0 1.0 0.0 0.3 0.0 0.0 0.0

1.0 2.5 1.0 0.0 0.0 0.3 0.0 0.0

1.0 2.0 2.5 1.0 0.0 0.0 0.3 0.0

1.0 1.0 1.0 2.5 0.0 0.0 0.0 0.3

3.0 1.0 1.0 1.0 0.3 0.0 0.0 0.0

1.0 3.0 2.0 1.0 0.0 0.3 0.0 0.0

1.0 1.0 3.0 1.0 0.0 0.0 0.3 0.0

2.0 1.0 2.0 3.0 0.0 0.0 0.0 0.3

3.0 2.0 3.0 2.0 0.3 0.0 0.3 0.0

3.5 2.0 3.5 3.0 0.3 0.0 0.3 0.3

1.0 2.0 3.5 1.0 0.0 0.0 0.3 0.0

4.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
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Table A2A. Sample Training Set Inputs and Desired
Outputs(cont.)

INPUT DESIRED OUTPUT

X1 X2 X3 X4 Y1 Y2 Y3 Y4

2.5 1.0 4.0 1.0 0.3 0.0 0.6 0.0

2.0 5.0 1.0 0.0 0.0 0.6 0.0 0.0

2.5 2.0 2.0 5.5 0.3 0.0 0.0 0.6

1.0 2.0 5.0 1.0 0.0 0.0 0.6 0.0

5.0 1.0 2.0 1.0 0.6 0.0 0.0 0.0

5.0 3.0 2.0 1.0 0.5 0.3 0.0 0.0

3.0 4.0 2.0 1.0 0.3 0.6 0.0 0.0

2.0 2.0 3.0 4.0 0.0 0.0 0.3 0.6

5.5 3.0 4.0 3.0 0.6 0.3 0.6 0.3

1.0 3.0 4.0 2.0 0.0 0.3 0.6 0.0

6.0 1.0 2 0 1.0 0.9 0.0 0.0 0.0

3.0 6.5 1.0 1.0 0.3 0.9 0.0 0.0

2.0 1.0 6.0 1.0 0.0 0.0 0.9 0.0

1.0 2.5 1.0 6.0 0.0 0.3 0.0 0.9

2.0 7.0 1.0 0.0 0.0 0.9 0.) 0.0

1.0 1.0 1.0 6.0 0.0 0.0 0.0 0.9

7.0 3.0 2.0 2.0 0.9 0.3 0.0 0.0

2.0 7.0 2.0 3.0 0.0 0.9 0.0 0.3

2.0 3.0 2.0 6.0 0.0 0.3 0.0 0.9

6.0 4.0 3.0 1.0 0.9 0.6 0.3 0.0

1.0 3.0 4.0 6.0 0.0 0.3 0.6 0.9

3.0 2.0 7.0 2.0 0.3 0.0 0.9 0.0
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